This paper presents a novel color correction technique for classifying vehicles under different lighting conditions using their colors. To reduce the lighting effects, a reference image is first selected for building the mapping function between the current frame and the reference image. With this mapping function, the color distortions between frames can be reduced to minimum. In addition to lighting changes, the effect of sun light will make the vehicle window become white and lead to the errors of vehicle classification. To reduce this effect, a windowremoving task is then applied for making vehicle pixels with the same color more concentrated on the foreground region. Then, vehicles can be more accurately classified to their categories even though strong sun light casts on them. To tackle the confusion problem that some vehicle colors are too similar, e.g., "deep-blue" and "deepgreen", a novel tree-based classifier is then designed for classifying vehicles to more detailed labels. Experimental results have proved that the proposed method is a robust, accurate, and powerful tool for vehicle classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.