We assembled an ancestrally diverse collection of genome-wide association studies of type 2 diabetes (T2D) in 180,834 cases and 1,159,055 controls (48.9% non-European descent). We identified 277 loci at genome-wide significance (p<5x10-8), including 237 attaining a more stringent trans-ancestry threshold (p<5x10-9), which were delineated to 338 distinct association signals. Trans-ancestry meta-regression offered substantial enhancements to fine-mapping, with 58.6% of associations more precisely localised due to population diversity, and 54.4% of signals resolved to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying foundations for functional investigations. Trans-ancestry genetic risk scores enhanced transferability across diverse populations, providing a step towards more effective clinical translation to improve global health.
To investigate the potential roles of matrix metalloproteinases (MMPs) in ovarian granulosa cell differentiation, we studied the interactive effects of FSH and local ovarian factors, transforming growth factor beta1 (TGFbeta1) and androstenedione, on gelatinase secretion and progesterone production in rat ovarian granulosa cells. Granulosa cells of eCG-primed immature rats were treated once with various doses of FSH and TGFbeta1 and androstenedione alone or in combinations for 2 days. Conditioned media were analyzed for gelatinase activity using gelatin-zymography/densitometry and progesterone levels using enzyme immunoassay. Cell lysates were analyzed for steroidogenic acute regulatory (StAR) and cholesterol side-chain-cleavage (P450scc) enzyme protein levels. This study demonstrates for the first time that FSH dose-dependently increased the secretion of a major 63-kDa gelatinase and minor 92- and 67-kDa gelatinases. TGFbeta1 also dose-dependently increased the secretion of 63-kDa gelatinase, while androstenedione alone had no effect. The 92-kDa gelatinase was identified as the pro-MMP9 that could be cleaved by aminophenylmercuric acetate into the 83-kDa active form. Importantly, we show that TGFbeta1 and androgen act in an additive manner to enhance FSH stimulatory effects both on the secretion of gelatinases and the production of progesterone. We further show by immunoblotting that the enhancing effect of TGFbeta1 and androstenedione on FSH-stimulated steroidogenesis is partly mediated through the increased level of StAR protein and/or P450scc enzyme. In conclusion, this study indicates that, during antral follicle development, TGFbeta1 and androgen act to enhance FSH promotion of granulosa cell differentiation and that the process may involve the interplay of modulating cell- to-matrix/cell-to-cell interaction and steroidogenic activity.
Bipolar disorder (BPD) is a complex psychiatric trait with high heritability. Despite efforts through conducting genome-wide association (GWA) studies, the success of identifying susceptibility loci for BPD has been limited, which is partially attributed to the complex nature of its pathogenesis. Pathway-based analytic strategy is a powerful tool to explore joint effects of gene sets within specific biological pathways. Additionally, to incorporate other aspects of genomic data into pathway analysis may further enhance our understanding for the underlying mechanisms for BPD. Patterns of DNA methylation play important roles in regulating gene expression and function. A commonly observed phenomenon, allele-specific methylation (ASM) describes the associations between genetic variants and DNA methylation patterns. The present study aimed to identify biological pathways that are involve in the pathogenesis of BPD while incorporating brain specific ASM information in pathway analysis using two large-scale GWA datasets in Caucasian populations. A weighting scheme was adopted to take ASM information into consideration for each pathway. After multiple testing corrections, we identified 88 and 15 enriched pathways for their biological relevance for BPD in the Genetic Association Information Network (GAIN) and the Wellcome Trust Case Control Consortium dataset, respectively. Many of these pathways were significant only when applying the weighting scheme. Three ion channel related pathways were consistently identified in both datasets. Results in the GAIN dataset also suggest for the roles of extracellular matrix in brain for BPD. Findings from Gene Ontology (GO) analysis exhibited functional enrichment among genes of non-GO pathways in activity of gated channel, transporter, and neurotransmitter receptor. We demonstrated that integrating different data sources with pathway analysis provides an avenue to identify promising and novel biological pathways for exploring the underlying molecular mechanisms for bipolar disorder. Further basic research can be conducted to target the biological mechanisms for the identified genes and pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.