Panax ginseng is traditionally used as a remedy for cancer, inflammation, stress and aging, and ginsenoside-Rg5 is a major bioactive constituent of steamed ginseng. The present study aimed to evaluate whether ginsenoside-Rg5 had any marked cytotoxic, apoptotic or DNA-damaging effects in human cervical cancer cells. Five human cervical cancer cell lines (HeLa, MS751, C33A, Me180 and HT-3) were used to investigate the cytotoxicity of ginsenoside-Rg5 using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Additionally, the effects of ginsenoside-Rg5 on the apoptosis of HeLa and MS751 cells were detected using DNA ladder assays and flow cytometry. DNA damage was assessed in the HeLa and MS751 cells using alkaline comet assays and by detection of γH2AX focus formation. The HeLa and MS751 cells were significantly more sensitive to ginsenoside-Rg5 treatment compared with the C-33A, HT-3 and Me180 cells. As expected, ginsenoside-Rg5 induced significant concentration- and time-dependent increases in apoptosis. In addition, ginsenoside-Rg5 induced significant concentration-dependent increases in the level of DNA damage compared with the negative control. Consistent with the comet assay data, the percentage of γH2AX-positive HeLa and MS751 cells also revealed that ginsenoside-Rg5 caused DNA double-strands to break in a concentration-dependent manner. In conclusion, ginsenoside-Rg5 had marked genotoxic effects in the HeLa and MS751 cells and, thus, demonstrates potential as a genotoxic or cytotoxic drug for the treatment of cervical cancer.
Abstract. Endometrial carcinoma (EC) is a common malignancy in females. MicroRNAs (miRs) are a class of non-coding RNA that regulate a wide variety of cellular processes, and are important in the development of multiple types of malignancy. In the present study, cancerous and adjacent non-cancerous normal tissue samples were collected from 24 patients diagnosed with EC. Reverse transcription quantitative polymerase chain reaction was performed on the tissue samples to determine the expression levels of six candidate miRs. These miRs have been previously reported to be differentially expressed in EC; however, the present study observed that only miR-337 was differentially expressed. In addition, the current study identified phosphatase and tensin homolog (PTEN) as a target of miR-337 using computational analysis and a luciferase assay. EC cells transfected with miR-337 mimics and anti-PTEN small interfering RNA demonstrated significantly decreased expression of PTEN, markedly increased proliferation and inhibition of cell apoptosis. The results indicate that miR-337 is oncogenic in EC cells, as it suppresses PTEN expression. This may facilitate the development of miR-based prevention or treatment strategies for EC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.