Epithelial–mesenchymal transition (EMT) has been recognized as a key element of cell migration and invasion in lung cancer; however, the underlying mechanisms are not fully elucidated. Recently, emerging evidence suggest that miRNAs have crucial roles in control of EMT and EMT-associated traits such as migration, invasion and chemoresistance. Here, we found that miR-218 expression levels were significantly downregulated in lung cancer tissues compared with adjacent non-cancerous tissues, and the levels of miR-218 were significantly associated with histological grades and lymph node metastasis. Overexpression of miR-218 inhibited cell migration and invasion as well as the EMT process. Of particular importance, miR-218 was involved in the metastatic process of lung cancer cells in vivo by suppressing local invasion and distant colonization. We identified Slug and ZEB2 as direct functional targets of miR-218. Inverse correlations were observed between miR-218 levels and Slug/ZEB2 levels in cancer tissue samples. In addition, overexpression of miR-218 in H1299 increased chemosensitivity of cells to cisplatin treatment through suppression of Slug and ZEB2. These findings highlight an important role of miR-218 in the regulation of EMT-related traits and metastasis of lung cancer in part by modulation of Slug/ZEB2 signaling, and provide a potential therapeutic strategy by targeting miR-218 in NSCLC.
ABSTRACT. Bartonella henselae, an infectious agent causing catscratch disease and vasculoproliferative disorders in humans, is a fastidious facultative intracellular pathogen. The outer membrane proteins of B. henselae are key molecules that play a primary role in host-cell interactions. We isolated B. henselae outer membrane proteins, using the ionic detergent N-lauroyl sarcosine sodium salt and sodium carbonate, purification by two-dimensional (2-D) gel electrophoresis, and protein identification using mass spectrometry. Treatment with buffers containing ASB-14 and ZWITTERGENT 3-10 increased solubilization of B. henselae proteins, particularly proteins with basic pI. Three hundred and sixty- eight spots were detected from the sarcosine-insoluble outer membrane fraction; 94 distinct protein species were identified from 176 spots. In the outer membrane fraction from carbonate incubation, 471 spots were calculated and 259 spots were identified, which included 139 protein entries. There were six outer membrane proteins in the sarcosine-insoluble outer membrane fraction compared with nine outer membrane proteins from samples subjected to carbonate incubation. We used bioinformatic analysis to identify 44 outer membrane proteins by prediction of their domains and tertiary structures and documented the potential virulence factors. We established the 2-D reference maps of the outer membrane subproteome of B. henselae using the two different extraction methods, which were partly complementary to each other. Sodium carbonate extraction isolated low-abundance and basic proteins better than the lauroyl sarcosine sodium salt extraction, which enriched high-abundance porins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.