Quantitative elasticity imaging seeks to retrieve spatial maps of elastic moduli of tissue. Unlike strain, which is commonly imaged in compression elastography, elastic moduli are intrinsic properties of tissue and so this approach reconstructs images that are largely operator and system independent, enabling objective, longitudinal and multi-site diagnoses. Recently, novel quantitative elasticity imaging approaches to compression elastography have been developed. These methods use a calibration layer with known mechanical properties to sense the stress at the tissue surface, which combined with strain, is used to estimate the tissue's elastic moduli by assuming homogeneity in the stress field. However, this assumption is violated in mechanically heterogeneous samples. We present a more general approach to quantitative elasticity imaging that overcomes this limitation through an efficient iterative solution of the inverse elasticity problem using adjoint elasticity equations. We present solutions for linear elastic, isotropic and incompressible solids; however, this method can be employed for more complex mechanical models. We retrieve the spatial
Angiogenic sprouting is a critical process involved in vascular network formation within tissues. During sprouting, tip cells and ensuing stalk cells migrate collectively into the extracellular matrix while preserving cell–cell junctions, forming patent structures that support blood flow. Although several signaling pathways have been identified as controlling sprouting, it remains unclear to what extent this process is mechanoregulated. To address this question, we investigated the role of cellular contractility in sprout morphogenesis, using a biomimetic model of angiogenesis. Three-dimensional maps of mechanical deformations generated by sprouts revealed that mainly leader cells, not stalk cells, exert contractile forces on the surrounding matrix. Surprisingly, inhibiting cellular contractility with blebbistatin did not affect the extent of cellular invasion but resulted in cell–cell dissociation primarily between tip and stalk cells. Closer examination of cell–cell junctions revealed that blebbistatin impaired adherens-junction organization, particularly between tip and stalk cells. Using CRISPR/Cas9-mediated gene editing, we further identified NMIIA as the major isoform responsible for regulating multicellularity and cell contractility during sprouting. Together, these studies reveal a critical role for NMIIA-mediated contractile forces in maintaining multicellularity during sprouting and highlight the central role of forces in regulating cell–cell adhesions during collective motility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.