a b s t r a c tGiven the complexity and uncertainty of the influencing factors of slope stability, its accurate evaluation is difficult to accomplish using conventional approaches. This paper presents the use of a least square support vector machine (LSSVM) algorithm based on quantum-behaved particle swarm optimization (QPSO) to establish the nonlinear relationship of slope stability. In the proposed QPSO-LSSVM algorithm, QPSO is employed to optimize the important parameters of LSSVM. To identify the local and global optimum, three popular benchmark functions are utilized to test the abilities of the proposed QPSO, the nonlinearly decreasing weight PSO, and the linearly decreasing weight PSO algorithms. The proposed QPSO exhibited superior performance over the other aforementioned algorithms. Simulation results obtained from PSO-LSSVM, QPSO-LSSVM, and LSSVM algorithms are compared in a case. Case analysis shows that QPSO-LSSVM has the quickest search velocity and the best convergence performance among the three algorithms, and is therefore considered most suitable for slope stability analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.