Numerous experiments have demonstrated that the C-terminal domain of the fibrinogen Aalpha-chain, the alphaC domain, has a role in polymerization. To further examine the role of this domain, we synthesized a recombinant fibrinogen, Aalpha251 fibrinogen, that lacks the alphaC domain. We examined thrombin-catalyzed fibrinopeptide release and found that the rate of FpB release from Aalpha251 fibrinogen was 2.5-fold slower than FpB release from normal fibrinogen, while the rate of FpA release was the same for both proteins. We examined thrombin-catalyzed polymerization and found that the rates of protofibril formation and lateral aggregation were similar for both proteins, although discernible differences in lateral aggregation were clear. The rate of protofibril formation for Aalpha251 fibrinogen was never less than 85% of normal fibrinogen, while the rate of lateral aggregation for Aalpha251 fibrinogen varied from 64 to 74% of normal. We examined polymerization of fibrin monomers and found that polymerization of Aalpha251 fibrin was similar to normal fibrin at 0.4 M NaCl, but clearly different from normal at 0.05 M NaCl. These results indicate that the alphaC domain has a role in lateral aggregation, but this role is more subtle than anticipated from previous experiments, particularly those with fibrinogen fragment X. We interpret this unanticipated finding as indicative of an important contribution from the N-terminus of the beta-chain, such that protein heterogeneity that includes small amounts of fibrin lacking that N-terminus of the beta-chain leads to markedly altered lateral aggregation.
Structural analysis of recombinant fibrinogen fragment D revealed that the calcium-binding site (beta2-site) composed of residues BbetaAsp261, BbetaAsp398, BbetaGly263, and gammaGlu132 is modulated by the "B:b" interaction. To determine the beta2-site's role in polymerization, we engineered variant fibrinogen gammaE132A in which calcium binding to the beta2-site was disrupted by replacing glutamic acid at gamma132 with alanine. We compared polymerization of gammaE132A to normal fibrinogen as a function of calcium concentration. Polymerization of gammaE132A at concentrations of calcium
To determine the significance of the gamma2 calcium-binding site in fibrin polymerization, we synthesized the fibrinogen variant, gammaD298,301A. We expected these two alanine substitutions to prevent calcium binding in the gamma2 site. We examined the influence of calcium on the polymerization of gammaD298,301A fibrinogen, evaluated its plasmin susceptibility, and solved 2.7 and 2.4 A crystal structures of the variant with the peptide ligands Gly-Pro-Arg-Pro-amide (GPRP) and Gly-His-Arg-Pro-amide (GHRP), respectively. We found that thrombin-catalyzed polymerization of gammaD298,301A fibrinogen was modestly impaired, whereas batroxobin-catalyzed polymerization was significantly impaired relative to normal fibrinogen. Notably, the influence of calcium on polymerization was the same for the variant and for normal fibrinogen. Fibrinogen gammaD298,301A was more susceptible to plasmin proteolysis in the presence of GPRP. This finding suggests structural changes in the near-by "a" polymerization site. Comparisons of the structures revealed minor conformational changes in the gamma294-301 loop that are likely responsible for the weakened "a" site. When considered altogether, the data suggest that the gamma2 calcium-binding site does not significantly modulate polymerization. We cannot, however, rule out the possibility that the weakened "a" polymerization site masks an important role for the gamma2 calcium-binding site in normal polymerization. Somewhat unexpectedly, the structure data showed that GPRP bound to the "b" site and induced the same local conformational changes as GHRP to this site. This structure shows that "A:b" interactions can occur and suggests that these may participate in normal polymerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.