Better understanding of human hepatocellular carcinoma (HCC) pathogenesis at the molecular level will facilitate the discovery of tumor initiating events. Herein, transcriptome sequencing revealed that adenosine (A)-to-inosine (I) RNA editing of antizyme inhibitor 1 (AZIN1) displays a high modification rate in HCC specimens. A-to-I editing of AZIN1 transcripts is specifically regulated by adenosine deaminase acting on RNA-1 (ADAR1). The serine (S) → glycine (G) substitution at residue 367, located in β-strand 15 (β15), predicted a conformational change, induced a cytoplasmic-to-nuclear translocation, and conferred “gain-of-function” phenotypes manifested by augmented tumor initiating potential and more aggressive behavior. Compared with wild-type AZIN1 protein, the edited form possesses stronger affinity to antizyme, and the resultant higher protein stability promotes cell proliferation via the neutralization of antizyme-mediated degradation of ornithine decarboxylase (ODC) and cyclin D1 (CCND1). Collectively, A-to-I RNA editing of AZIN1 may be a potential driver in the pathogenesis of human cancers, particularly HCC.
SUMMARY The tumor stroma is believed to contribute to some of the most malignant characteristics of epithelial tumors. However, signaling between stromal and tumor cells is complex and remains poorly understood. Here we show that the genetic inactivation of Pten in stromal fibroblasts of mouse mammary glands accelerated the initiation, progression and malignant transformation of mammary epithelial tumors. This was associated with the massive remodeling of the extra-cellular matrix (ECM), innate immune cell infiltration and increased angiogenesis. Loss of Pten in stromal fibroblasts led to increased expression, phosphorylation (T72) and recruitment of Ets2 to target promoters known to be involved in these processes. Remarkably, Ets2 inactivation in Pten stroma-deleted tumors ameliorated disruption of the tumor microenvironment and was sufficient to decrease tumor growth and progression. Global gene expression profiling of mammary stromal cells identified a Pten-specific signature that was highly represented in the tumor stroma of breast cancer patients. These findings identify the Pten-Ets2 axis as a critical stroma-specific signaling pathway that suppresses mammary epithelial tumors.
Nonalcoholic fatty liver disease (NAFLD)-induced hepatocellular carcinoma (HCC) is an emerging malignancy in the developed world; however, mechanisms that contribute to its formation are largely unknown, and targeted therapy is currently not available. Our RNA sequencing analysis of NAFLD-HCC samples revealed squalene epoxidase () as the top outlier metabolic gene overexpressed in NAFLD-HCC patients. Hepatocyte-specific transgenic expression in mice accelerated the development of high-fat, high-cholesterol diet-induced HCC. exerts its oncogenic effect via its metabolites, cholesteryl ester and nicotinamide adenine dinucleotide phosphate (NADP). Increased expression promotes the biosynthesis of cholesteryl ester, which induces NAFLD-HCC cell growth. increased the NADP/NADPH (reduced form of NADP) ratio, which triggered a cascade of events involving oxidative stress-induced DNA methyltransferase 3A (DNMT3A) expression, DNMT3A-mediated epigenetic silencing of PTEN, and activation of AKT-mTOR (mammalian target of rapamycin). In human NAFLD-HCC and HCC, is overexpressed and its expression is associated with poor patient outcomes. Terbinafine, a U.S. Food and Drug Administration-approved antifungal drug targeting, markedly inhibited -induced NAFLD-HCC cell growth in NAFLD-HCC and HCC cells and attenuated tumor development in xenograft models and in transgenic mice. Suppression of tumor growth by terbinafine is associated with decreased cholesteryl ester concentrations, restoration of PTEN expression, and inhibition of AKT-mTOR, consistent with blockade of SQLE function. Collectively, we established as an oncogene in NAFLD-HCC and propose that repurposing SQLE inhibitors may be a promising approach for the prevention and treatment of NAFLD-HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.