This paper presents experiments and models of an energy harvesting device in which a low frequency resonator impacts a high frequency energy harvesting resonator, resulting in energy harvesting predominantly at the system's coupled vibration frequency. Analysis shows that a reduced mechanical damping ratio during coupled vibration enables increased electrical power generation as compared with conventional technology. Experiments demonstrate that the efficiency of electrical power transfer is significantly improved with the coupled vibration approach. An average power output of 0.43 mW is achieved under 0.4g acceleration at 8.2 Hz, corresponding to a power density of 25.5 μW cm −3 . The measured power and power density at the resonant frequency are respectively 4.8 times and 13 times the measured peak values for a conventional harvester created from a low frequency beam alone.
Interdecadal variations of the East Asian winter monsoon (EAWM) and their association with the quasistationary planetary wave activity are analyzed by using the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis dataset and the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis dataset. It is found that the EAWM experienced a significant weakening around the late 1980s; that is, the EAWM was strong during 1976-87 and became weak after 1988. This leads to an obvious increase in the wintertime surface air temperature as well as a decrease in the frequency of occurrence of cold waves over East Asia. The dynamical process through which the EAWM is weakened is investigated from the perspective of quasi-stationary planetary waves. It is found that both the propagation and amplitude of quasi-stationary planetary waves have experienced obvious interdecadal variations, which are well related to those of the EAWM. Compared to the period 1976-87, the horizontal propagation of quasi-stationary planetary waves after 1988 is enhanced along the low-latitude waveguide in the troposphere, and the upward propagation of waves into the stratosphere is reduced along the polar waveguide. This results in a weakened subtropical jet around 408N due to the convergence of the Eliassen-Palm flux. The East Asian jet stream is then weakened, leading to the weakening of the EAWM since 1988. In addition, the amplitude of quasi-stationary planetary waves is significantly weakened around 458N, which is related to the reduced upward propagation of waves from the lower boundary after 1988. This reduced amplitude may weaken both the Siberian high and the Aleutian low, reduce the pressure gradient in between, and then weaken the EAWM. Further analyses indicate that zonal wavenumber 2 plays the dominant role in this process.
Freestanding, flexible/foldable, and wearable bifuctional ultrathin graphene paper for heating and cooling is fabricated as an active material in personal thermal management (PTM). The promising electrical conductivity grants the superior Joule heating for extra warmth of 42 °C using a low supply voltage around 3.2 V. Besides, based on its high out-of-plane thermal conductivity, the graphene paper provides passive cooling via thermal transmission from the human body to the environment within 7 s. The cooling effect of graphene paper is superior compared with that of the normal cotton fiber, and this advantage will become more prominent with the increased thickness difference. The present bifunctional graphene paper possesses high durability against bending cycles over 500 times and wash time over 1500 min, suggesting its great potential in wearable PTM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.