The green tea polyphenol epigallocatechin-3-gallate (EGCG) is widely consumed as a dietary supplement. Its potential properties include slowing aging and extending lifespan, although how exactly this is achieved remains unclear. Here, we report that EGCG promoted healthy lifespan in Caenorhabditis elegans when administered throughout or only at early-to-mid adulthood. Specifically, EGCG extended lifespan in an inverted U-shaped dose-response manner. The life-extending mechanism was stimulated by EGCG-induced production of reactive oxygen species (ROS). Additionally, EGCG triggered mitochondrial biogenesis to restore mitochondrial function. The EGCG-induced increase in lifespan depends on known energy sensors such as AMPK/AAK-2, as well as SIRT1/SIR-2.1 and FOXO/DAF-16. Interestingly, aging decreased the response to EGCG and progressively neutralized its beneficial effects on longevity. Collectively, our findings link EGCG to the process of mitohormesis and suggest an inducible, AMPK/SIRT1/FOXO-dependent redox signaling module that could be invoked in different contexts to extend healthy lifespan. Its effectiveness is higher in younger adults and declines with age.
Smart hydrogels with responsive behaviors have attracted tremendous attention. However, it is still a challenge to synthesize stretchable hydrogels capable of changing their original properties in response to multiple external stimuli. Here, integration of actuation function, shape memory, and self‐healing capability in a highly stretchable hydrogel under triple external triggers is achieved by rationally engineering multiple functional moieties. The hydrogel exhibits high stretchability (average relative strain (mm/mm) is >15) and excellent fatigue resistance during 100 loading cycles of 100% strain. Incorporating a moisture‐insensitive polymer film with the hydrogel, hydroactuated functionality is demonstrated. Moreover, shape memory and self‐healing abilities of the hydrogel are realized by the formation of ionic crosslinking or dynamic borate ester in conditions of multivalent cations and pH, respectively. Deformable plastic flowers are displayed in this work as a proof‐of‐concept, and it is believed that this smart hydrogel could be used in plenty of frontier fields, such as designing electronic devices, soft robotics, and actuators.
The present study examined the effects of black tea (Camellia sinensis) extracts (BTE) in Caenorhabditis elegans under various abiotic stressors. Results showed BTE increased nematode resistance to osmosis, heat, and UV irradiation treatments. However, BTE could not increase nematodes' lifespan under normal culture conditions and MnCl2-induced toxicity at concentrations we used. Further studies showed that BTE decreased reactive oxygen species and up-regulated some antioxidant enzymes, including GSH-PX, and genes, such as gsh-px and sod-3. However, only a slight extension in mev-1 mutants mean lifespan was observed without significance. These results indicated that the antioxidant activity of BTE might be necessary but not sufficient to protect against aging to C. elegans. Moreover, BTE increased the mRNA level of stress-response genes such as sir-2.1 and sek-1. Our finding demonstrated BTE might increase heat and UV stress resistance in a sir.2.1-dependent manner. Taken together, BTE enhanced stress resistance with multiple mechanisms in C. elegans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.