Although tropical forest soils contributed substantially global soil methane uptake, observations on soil methane fluxes in tropical forests are still sparse, especially in Southeast Asia, leading to large uncertainty in the estimation of global soil methane uptake. Here, we conducted two-year (from Sep, 2016 to Sep, 2018) measurements of soil methane fluxes in a lowland tropical forest site in Hainan island, China. At this tropical forest site, soils were substantial methane sink, and average annual soil methane uptake was estimated at 2.00 kg CH4-C ha−1 yr−1. The seasonality of soil methane uptake showed strong methane uptake in the dry season (−1.00 nmol m−2 s−1) and almost neutral or weak soil methane uptake in the wet season (−0.24 nmol m−2 s−1). The peak soil methane uptake rate was observed as −1.43 nmol m−2 s−1 in February, 2018, the driest and coolest month during the past 24 months. Soil moisture was the dominant controller of methane fluxes, and could explain 94% seasonal variation of soil methane fluxes. Soil temperature could not enhance the explanation of seasonal variation of soil methane fluxes on the top of soil moisture. A positive relationship between soil methane uptake and soil respiration was also detected, which might indicate co-variation in activities of methanotroph and roots and/or microbes for soil heterotrophic respiration. Our study highlights that tropical forests in this region acted as a methane sink.
Soil respiration represents the largest carbon (C) flux from terrestrial ecosystems to the atmosphere. We created a study site in tropical lowland rainforest and used static chamber method to measure the temporal variations of soil respiration and their relationship with environmental factors at monthly time scale. The temporal variations of soil respiration showed a seasonal pattern related to soil temperature (p < .01) and soil moisture (p < .05). We tested different regression models to explore the relationship between soil respiration and environmental factors. Soil respiration had a better fit with soil temperature than with soil moisture in single-factor models. At different temperatures, the Q 10 values from different models changed in rather different ways. We found that the mixed quadratic model composite of soil temperature and moisture had the best-fitting effect (R 2 ¼ .74) on soil respiration and could better explain the seasonal variation. In a certain soil moisture range close to 15%, soil respiration increased with soil temperature. However, soil respiration became restricted when the moisture was greatly higher or lower than this value. Furthermore, at low soil temperatures (lower than 16 C), higher soil moisture could decrease soil respiration rapidly. Thus, soil respiration in a tropical lowland rainforest is co-controlled by soil temperature and moisture. This study expands our observations of soil respiration in tropical forests and how it responds to environmental factors, which is important for reducing errors in evaluation and scaling up of soil carbon flux in climate change studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.