Purpose: The aim of the 2016 quantitative susceptibility mapping (QSM) reconstruction challenge was to test the ability of various QSM algorithms to recover the underlying susceptibility from phase data faithfully. Methods: Gradient-echo images of a healthy volunteer acquired at 3T in a single orientation with 1.06 mm isotropic resolution. A reference susceptibility map was provided, which was computed using the susceptibility tensor imaging algorithm on data acquired at 12 head orientations. Susceptibility maps calculated from the single orientation data were compared against the reference susceptibility map. Deviations were quantified using the following metrics: root mean squared error (RMSE), structure similarity index (SSIM), highfrequency error norm (HFEN), and the error in selected white and gray matter regions. Results: Twenty-seven submissions were evaluated. Most of the best scoring approaches estimated the spatial frequency content in the ill-conditioned domain of the dipole kernel using compressed sensing strategies. The top 10 maps in each category had similar error metrics but substantially different visual appearance. Conclusion: Because QSM algorithms were optimized to minimize error metrics, the resulting susceptibility maps suffered from over-smoothing and conspicuity loss in fine features such as vessels. As such, the challenge highlighted the need for better numerical image quality criteria.
Background. In Japan, “Shinrin-yoku” or forest bathing (spending time in forests) is a major practice used for relaxation. However, its effects on promoting human mental health are still under consideration. The objective of this study was to investigate the physiological and psychological relaxation effects of forest walking on adults. Sixty participants (50% males; 50% females) were trained to walk 15-minute predetermined courses in a bamboo forest and a city area (control). The length of the courses was the same to allow comparison of the effects of both environments. Blood pressure and EEG results were measured to assess the physiological responses and the semantic differential method (SDM) and STAI were used to study the psychological responses. Blood pressure was significantly decreased and variation in brain activity was observed in both environments. The results of the two questionnaires indicated that walking in the bamboo forest improves mood and reduces anxiety. Moreover, the mean meditation and attention scores were significantly increased after walking in a bamboo forest. The results of the physiological and psychological measurements indicate the relaxing effects of walking in a bamboo forest on adults.
BackgroundDNA-binding proteins are vital for the study of cellular processes. In recent genome engineering studies, the identification of proteins with certain functions has become increasingly important and needs to be performed rapidly and efficiently. In previous years, several approaches have been developed to improve the identification of DNA-binding proteins. However, the currently available resources are insufficient to accurately identify these proteins. Because of this, the previous research has been limited by the relatively unbalanced accuracy rate and the low identification success of the current methods.ResultsIn this paper, we explored the practicality of modelling DNA binding identification and simultaneously employed an ensemble classifier, and a new predictor (nDNA-Prot) was designed. The presented framework is comprised of two stages: a 188-dimension feature extraction method to obtain the protein structure and an ensemble classifier designated as imDC. Experiments using different datasets showed that our method is more successful than the traditional methods in identifying DNA-binding proteins. The identification was conducted using a feature that selected the minimum Redundancy and Maximum Relevance (mRMR). An accuracy rate of 95.80% and an Area Under the Curve (AUC) value of 0.986 were obtained in a cross validation. A test dataset was tested in our method and resulted in an 86% accuracy, versus a 76% using iDNA-Prot and a 68% accuracy using DNA-Prot.ConclusionsOur method can help to accurately identify DNA-binding proteins, and the web server is accessible at http://datamining.xmu.edu.cn/~songli/nDNA. In addition, we also predicted possible DNA-binding protein sequences in all of the sequences from the UniProtKB/Swiss-Prot database.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2105-15-298) contains supplementary material, which is available to authorized users.
BackgroundKey opinion leaders (KOLs) are people who can influence public opinion on a certain subject matter. In the field of medical and health informatics, it is critical to identify KOLs on various disease conditions. However, there have been very few studies on this topic.ObjectiveWe aimed to develop a recommender system for identifying KOLs for any specific disease with health care data mining.MethodsWe exploited an unsupervised aggregation approach for integrating various ranking features to identify doctors who have the potential to be KOLs on a range of diseases. We introduce the design, implementation, and deployment details of the recommender system. This system collects the professional footprints of doctors, such as papers in scientific journals, presentation activities, patient advocacy, and media exposure, and uses them as ranking features to identify KOLs.ResultsWe collected the information of 2,381,750 doctors in China from 3,657,797 medical journal papers they published, together with their profiles, academic publications, and funding. The empirical results demonstrated that our system outperformed several benchmark systems by a significant margin. Moreover, we conducted a case study in a real-world system to verify the applicability of our proposed method.ConclusionsOur results show that doctors’ profiles and their academic publications are key data sources for identifying KOLs in the field of medical and health informatics. Moreover, we deployed the recommender system and applied the data service to a recommender system of the China-based Internet technology company NetEase. Patients can obtain authority ranking lists of doctors with this system on any given disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.