SignificanceWe sequenced the genome and transcriptomes of the wild olive (oleaster). More than 50,000 genes were predicted, and evidence was found for two relatively recent whole-genome duplication events, dated at about 28 and 59 million years ago. Whole genome sequencing, as well as gene expression studies, provide further insights into the evolution of oil biosynthesis, and will aid future studies aimed at further increasing the production of olive oil, which is a key ingredient of the healthy Mediterranean diet and has been granted a qualified health claim by FDA. 5 AbstractHere, we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudo-chromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae-lineage specific paleopolyploidy events, dated at approximately 28 and 59 million years ago. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis.The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared to sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by a short-interfering RNA (siRNA) derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression.Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5 and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics. 6 /bodyAs a symbol of peace, fertility, health and longevity, the olive tree (Olea europaea L.) is a socio-economically important oil crop that is widely grown in the Mediterranean Basin.Belonging to the Oleaceae family (order Lamiales), it can biosynthesize essential unsaturated fatty acids and other important secondary metabolites, such as vitamins and phenolic compounds (1). The olive tree is a diploid (2n = 46) allogamous crop that can be vegetatively propagated and live for thousands of years (2). Paleobotanical evidence suggests that olive oil was already produced in the Bronze Age (3). It has been thought that cultivated varieties were derived from the wild olive tree, called oleaster (O. europaea var. sylvestris), in Asia Minor, which then spread to Greece (4). Nevertheless, the exact domestication history of the olive tree is unknown (5). Due to their longevity, oleaster...
Efficient crop improvement depends on the application of accurate genetic information contained in diverse germplasm resources. Here we report a reference-grade genome of wild soybean accession W05, with a final assembled genome size of 1013.2 Mb and a contig N50 of 3.3 Mb. The analytical power of the W05 genome is demonstrated by several examples. First, we identify an inversion at the locus determining seed coat color during domestication. Second, a translocation event between chromosomes 11 and 13 of some genotypes is shown to interfere with the assignment of QTLs. Third, we find a region containing copy number variations of the Kunitz trypsin inhibitor (KTI) genes. Such findings illustrate the power of this assembly in the analysis of large structural variations in soybean germplasm collections. The wild soybean genome assembly has wide applications in comparative genomic and evolutionary studies, as well as in crop breeding and improvement programs.
Long nanopore reads are advantageous in de novo genome assembly. However, nanopore reads usually have broad error distribution and high-error-rate subsequences. Existing error correction tools cannot correct nanopore reads efficiently and effectively. Most methods trim high-error-rate subsequences during error correction, which reduces both the length of the reads and contiguity of the final assembly. Here, we develop an error correction, and de novo assembly tool designed to overcome complex errors in nanopore reads. We propose an adaptive read selection and two-step progressive method to quickly correct nanopore reads to high accuracy. We introduce a two-stage assembler to utilize the full length of nanopore reads. Our tool achieves superior performance in both error correction and de novo assembling nanopore reads. It requires only 8122 hours to assemble a 35X coverage human genome and achieves a 2.47-fold improvement in NG50. Furthermore, our assembly of the human WERI cell line shows an NG50 of 22 Mbp. The high-quality assembly of nanopore reads can significantly reduce false positives in structure variation detection.
We thank J. Li from the China Agricultural University for providing the seeds of SK, X. Li for helping to conduct ChIA-PET sequencing and K. Kremling for critical comments on the manuscript.
While genetic variation at chromatin loops is relevant for human disease, the relationships between contact propensity (the probability that loci at loops physically interact), genetics, and gene regulation are unclear. We quantitatively interrogate these relationships by comparing Hi-C and molecular phenotype data across cell types and haplotypes. While chromatin loops consistently form across different cell types, they have subtle quantitative differences in contact frequency that are associated with larger changes in gene expression and H3K27ac. For the vast majority of loci with quantitative differences in contact frequency across haplotypes, the changes in magnitude are smaller than those across cell types; however, the proportional relationships between contact propensity, gene expression, and H3K27ac are consistent. These findings suggest that subtle changes in contact propensity have a biologically meaningful role in gene regulation and could be a mechanism by which regulatory genetic variants in loop anchors mediate effects on expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.