Violent interaction detection is a hot topic in computer vision. However, the recent research works on violent interaction detection mainly focus on the traditional hand-craft features, and does not make full use of the research results of deep learning in computer vision. In this paper, we propose a new robust violent interaction detection framework based on multi-stream deep learning in surveillance scene. The proposed approach enhances the recognition performance of violent action in video by fusing three different streams: attention-based spatial RGB stream, temporal stream, and local spatial stream. The attention-based spatial RGB stream learns the spatial attention regions of persons that have high probability to be action region through soft-attention mechanism. The temporal stream employs optical flow as input to extract temporal features. The local spatial stream learns spatial local features using block images as input. Experimental results demonstrate the effectiveness and reliability of the proposed method on three violent interactive datasets: hockey fights, movies, violent interaction. We also verify the proposed method on our own elevator surveillance video dataset and the performance of the proposed method is satisfied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.