Various types of InP-based semiconductor lasers, Fabry–Perot (FP), and distributed feedback (DFB), in different wavelength regions of 1.3, 1.48, and 1.55 μm have been subjected to human-body-model electrostatic discharge (ESD) testing. The reverse V-I characteristics of these diode lasers were found to be generally most sensitive in detecting ESD damage than the forward characteristics (e.g., threshold current) of the laser. The laser ESD failure voltages were much lower for the reverse than the forward polarity and DFB lasers were found to be more vulnerable to ESD than FP lasers. The failure mechanism was found to be due to localized melting—a thermal effect—in both polarities of ESD testing. We also report the study of the latent ESD effects on the long-term aging rates of semiconductor lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.