Summary Nasal administration has emerged as a promising and attractive route for vaccination, especially for the prophylaxis of respiratory diseases. Our previous studies have shown that severe acute respiratory syndrome coronavirus (SARS‐CoV) virus‐like particles (VLPs) can be assembled using a recombinant baculovirus (rBV) expression system and such VLPs induce specific humoral and cellular immune responses in mice after subcutaneous injection. Here, we investigated mucosal immune responses to SARS‐CoV VLPs in a mouse model. Mice were immunized in parallel, intraperitoneally or intranasally, with VLPs alone or with VLPs plus cytosine–phosphate–guanosine (CpG). Immune responses, including the production of SARS‐CoV‐specific serum immunoglobulin G (IgG) and secretory immunoglobulin A (sIgA), were determined in mucosal secretions and tissues. Both immunizations induced SARS‐CoV‐specific IgG, although the levels of IgG in groups immunized via the intraperitoneal (i.p.) route were higher. sIgA was detected in saliva in groups immunized intranasally but not in groups immunized intraperitoneally. CpG had an adjuvant effect on IgA production in genital tract washes when administered intranasally but only affected IgA production in faeces samples when administered intraperitoneally. In addition, IgA was also detected in mucosal tissues from the lung and intestine, while CpG induced an increased level of IgA in the intestine. Most importantly, neutralization antibodies were detected in sera after i.p. and intranasal (i.n.) immunizations. Secretions in genital tract washes from the i.n. group also showed neutralization activity. Furthermore, VLPs that were administered intraperitoneally elicited cellular immune responses as demonstrated by enzyme‐linked immunospot (ELISPOT) assay analyses. In summary, our study indicates that mucosal immunization with rBV SARS‐CoV VLPs represent an effective means for eliciting protective systemic and mucosal immune responses against SARS‐CoV, providing important information for vaccine design.
Severe acute respiratory syndrome (SARS)-CoV is a newly emerging virus that causes SARS with high mortality rate in infected people. To study the humoral responses against SARS-CoV, we evaluated nucleocapsid (N) and spike (S) proteins-specific antibodies in patients' sera by Western blotting and enzyme-linked immunosorbent assay (ELISA). Recombinant N and S proteins of SARS-CoV were purified from transformed E. coli. Serum specimens from 40 SARS-CoV-infected patients in the convalescent phase were analyzed by Western blotting using the purified antigens. Serial serum specimens from 12 RT-PCR-confirmed SARS patients were assayed by ELISA using the recombinant N protein as coated antigen. By Western blotting, 97.5% of the SARS patients were positive for N protein-specific antibodies whereas only 47.5% of the samples were positive for S protein-specific antibodies. Using N protein-based ELISA, 10 out of the 12 patients were positive for N protein-specific antibodies and 6 of them showed seroconversion at mean of 16 days after onset of fever. Immunoblotting was useful for detecting the humoral immune response after SARS-CoV infection. Antibodies against SARS-CoV N protein appear at the early stage of infection, therefore, N protein-based ELISA could serve as a simple, sensitive, and specific test for diagnosing SARS-CoV infection.
Cancer stem cells (CSCs) are a small population of cancer cells that exhibit stemness. These cells contribute to cancer metastasis, treatment resistance, and relapse following therapy; therefore, they may cause malignancy and reduce the success of cancer treatment. Nuclear factor kappa B- (NF-κB-) mediated inflammatory responses increase stemness in cancer cells, and CSCs constitutively exhibit higher NF-κB activation, which in turn increases their stemness. These opposite effects form a positive feedback loop that further amplifies inflammation and stemness in cancer cells, thereby expanding CSC populations in the tumor. Toll-like receptors (TLRs) activate NF-κB-mediated inflammatory responses when stimulated by carcinogenic microbes and endogenous molecules released from cells killed during cancer treatment. NF-κB activation by extrinsic TLR ligands increases stemness in cancer cells. Moreover, it was recently shown that increased NF-κB activity and inflammatory responses in CSCs may be caused by altered TLR signaling during the enrichment of stemness in cancer cells. Thus, the activation of TLR signaling by extrinsic and intrinsic factors drives a positive interplay between inflammation and stemness in cancer cells.
Immunotherapy using checkpoint blockade has revolutionized cancer treatment, improving patient survival and quality of life. Nevertheless, the clinical outcomes of such immunotherapy are highly heterogeneous between patients. Depending on the cancer type, the patient response rates to this immunotherapy are limited to 20-30%. Based on the mechanism underlying the antitumor immune response, new therapeutic strategies have been designed with the aim of increasing the effectiveness and specificity of the antitumor immune response elicited by checkpoint blockade agents. The activation of toll-like receptor 9 (TLR9) by its synthetic agonists induces the antitumor response within the innate immunity arm, generating adjuvant effects and priming the adaptive immune response elicited by checkpoint blockade during the effector phase of tumor-cell killing. This review first describes the underlying mechanisms of action and current status of monotherapy using TLR9 agonists and immune checkpoint inhibitors for cancer immunotherapy. The rationale for combining these two agents is discussed, and evidence indicating the current status of such combination therapy as a novel cancer treatment strategy is presented.
Activated T cells undergo metabolic reprogramming and effector-cell differentiation but the factors involved are unclear. Utilizing mice lacking DUSP6 (DUSP6), we show that this phosphatase regulates T cell receptor (TCR) signaling to influence follicular helper T (T) cell differentiation and T cell metabolism. In vitro, DUSP6 CD4 T cells produced elevated IL-21. In vivo, T cells were increased in DUSP6 mice and in transgenic OTII-DUSP6 mice at steady state. After immunization, DUSP6 and OTII-DUSP6 mice generated more T cells and produced more antigen-specific IgG2 than controls. Activated DUSP6 T cells showed enhanced JNK and p38 phosphorylation but impaired glycolysis. JNK or p38 inhibitors significantly reduced IL-21 production but did not restore glycolysis. TCR-stimulated DUSP6 T cells could not induce phosphofructokinase activity and relied on glucose-independent fueling of mitochondrial respiration. Upon CD28 costimulation, activated DUSP6 T cells did not undergo the metabolic commitment to glycolysis pathway to maintain viability. Unexpectedly, inhibition of fatty acid oxidation drastically lowered IL-21 production in DUSP6 T cells. Our findings suggest that DUSP6 connects TCR signaling to activation-induced metabolic commitment toward glycolysis and restrains T cell differentiation via inhibiting IL-21 production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.