Candida glabrata is the second or third most common Candida-associated species isolated from hospital-acquired infections, surpassing even C. albicans in some hospitals. With the rapid progression of the disease course of C. glabrata infections, there is an urgent need for a rapid and sensitive on-site assay for clinical diagnosis. Isothermal amplification is a recently developed method for rapid nucleic acid detection that is being increasingly used for on-site detection, especially recombinase polymerase amplification (RPA). RPA combined with lateral flow strips (LFS) can rapidly amplify and visually detect the target gene within 20 min. The whole detection process can be controlled within 30–60 min by rapid sample pre-treatment. In this study, RPA-LFS was used to amplify the internal transcribed spacer region 2 gene of C. glabrata. The primer–probe design was optimized by introducing base mismatches (probe modification of one base) to obtain a highly specific and sensitive primer–probe combination for clinical sample detection. RPA-LFS was performed on 23 common clinical pathogens to determine the specificity of the assay system. The RPA-LFS system specifically detected C. glabrata without cross-reaction with other fungi or bacteria. Gradient dilutions of the template were tested to explore the lower limit of detection of this detection system and to determine the sensitivity of the assay. The sensitivity was 10 CFU/µL, without interference from genomic DNA of other species. The RPA-LFS and qPCR assays were performed on 227 clinical samples to evaluate the detection performance of the RPA-LFS system. Eighty-five samples were identified as C. glabrata, representing a detection rate of 37.5%. The results were consistent with qPCR and conventional culture methods. The collective findings indicate a reliable molecular diagnostic method for the detection of C. glabrata, and to meet the urgent need for rapid, specific, sensitive, and portable clinical field-testing.
Background Candida parapsilosis is a common cause of candidiasis among hospitalized patients, often surpassing Candida albicans. Due to the recent increase in C. parapsilosis infections, there is an urgent need for rapid, sensitive, and real-time on-site detection of nucleic acids for timely diagnosis of candidiasis. Methods We developed an assay for detection of C. parapsilosis by combining recombinase polymerase amplification (RPA) with a lateral flow strip (LFS). The RPA-LFS assay was used to amplify the beta-1,3-glucan synthase catalytic subunit 2 (FSK2) gene of C. parapsilosis with a primer-probe set optimized by introducing base mismatches (4 bases modified by the probe and one by the reverse primer) to achieve specific and sensitive detection of clinical samples. Results The RPA assays can rapidly amplify and visualize a target gene within 30 min, while the entire process can be completed within 40 min by pre-processing the sample.The sensitivity and specificity of the RPA-LFS assay were determined by analysis of 35 common clinical pathogens and 281 clinical samples against quantitative PCR. Conclusions The results confirmed that the proposed RPA-LFS assay is a reliable molecular diagnostic method for the detection of C. parapsilosis to meet the urgent need for rapid, specific, sensitive, and portable field testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.