Cervical cancer is the fourth most common cancer in women worldwide. Increasing evidence has shown that miRNAs are related to the progression of cervical cancer. However, the mechanisms that affect the prognosis of cancer are still largely unknown. In the present study, we sought to identify miRNAs associated with poor prognosis of patient with cervical cancer, as well as the possible mechanisms regulated by them. The miRNA expression profiles and relevant clinical information of patients with cervical cancer were obtained from The Cancer Genome Atlas (TCGA). The selection of prognostic miRNAs was carried out through an integrated bioinformatics approach. The most effective miRNAs with synergistic and additive effects were selected for validation through in vitro experiments. Three miRNAs (miR-216b-5p, miR-585-5p, and miR-7641) were identified as exhibiting good performance in predicting poor prognosis through additive effects analysis. The functional enrichment analysis suggested that not only pathways traditionally involved in cancer but also immune system pathways might be important in regulating the outcome of the disease. Our findings demonstrated that a synergistic combination of three miRNAs may be associated, through their regulation of specific pathways, with very poor survival rates for patients with cervical cancer.
Lung adenocarcinoma (LUAD), the most common histological type of non-small cell lung cancer, is one of the most malignant and deadly diseases. Current treatments for advanced LUAD patients are far from ideal and require further improvements. Here, we utilized a systematic integrative analysis of LUAD microRNA sequencing (miRNA-seq) and RNA-seq data from The Cancer Genome Atlas (TCGA) to identify clinically relevant tumor suppressor miRNAs. Three miRNA candidates (miR-195-5p, miR-101-3p, and miR-338-5p) were identified based on their differential expressions, survival significance levels, correlations with targets, and an additive effect on survival among them. We further evaluated mimics of the three miRNAs to determine their therapeutic potential in inhibiting cancer progression. The results showed not only that each of the miRNA mimics alone but also the three miRNA mimics in combination were efficient at inhibiting tumor growth and progression with equal final concentrations, meaning that the three miRNA mimics in combination were more effective than the single miRNA mimics. Moreover, the combined miRNA mimics provided significant therapeutic effects in terms of reduced tumor volume and metastasis nodules in lung tumor animal models. Hence, our findings show the potential of using the three miRNAs in combination to treat LUAD patients with poor survival outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.