A step-scan Fourier-transform spectrometer coupled with a 6.4 m multipass absorption cell was employed to detect time-resolved infrared absorption spectra of the reaction intermediate CH3SO2 radical, produced upon irradiation of a flowing gaseous mixture of CH3I and SO2 in CO2 at 248 nm. Two transient bands with origins at 1280 and 1076 cm(-1) were observed and are assigned to the SO2-antisymmetric and SO2-symmetric stretching modes of CH3SO2, respectively. Calculations with density-functional theory (B3LYP/aug-cc-pVTZ and B3P86/aug-cc-pVTZ) predicted the geometry, vibrational, and rotational parameters of CH3SO2 and CH3OSO. Based on predicted rotational parameters, the simulated absorption band of the SO2-antisymmetric stretching mode that is dominated by the b-type rotational structure agrees satisfactorily with experimental results. In addition, a band near 1159 cm(-1) observed at a later period is tentatively attributed to CH3SO2I. The reaction kinetics of CH3 + SO2 --> CH3SO2 and CH3SO2 + I --> CH3SO2I based on the rise and decay of absorption bands of CH3SO2 and CH3SO2I agree satisfactorily with previous reports.
A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to monitor time-resolved infrared absorption of transient species produced upon irradiation at 248 nm of a flowing mixture of CH(3)SSCH(3) and O(2) at 260 K. Two transient bands observed with origins at 1397±1 and 1110±3 cm(-1) are tentatively assigned to the antisymmetric CH(3)-deformation and O-O stretching modes of syn-CH(3)SOO, respectively; the observed band contour indicates that the less stable anti-CH(3)SOO conformer likely contributes to these absorption bands. A band with an origin at 1071±1 cm(-1), observed at a slightly later period, is assigned to the S=O stretching mode of CH(3)SO, likely produced via secondary reactions of CH(3)SOO. These bands fit satisfactorily with vibrational wavenumbers and rotational contours simulated based on rotational parameters of syn-CH(3)SOO, anti-CH(3)SOO, and CH(3)SO predicted with density-functional theories B3LYP/aug-cc-pVTZ and B3P86/aug-cc-pVTZ. Two additional bands near 1170 and 1120 cm(-1) observed at a later period are tentatively assigned to CH(3)S(O)OSCH(3) and CH(3)S(O)S(O)CH(3), respectively; both species are likely produced from self-reaction of CH(3)SOO. The production of SO(2) via secondary reactions was also observed and possible reaction mechanism is discussed.
ClSO was produced as an intermediate upon irradiating a flowing mixture of Cl2SO and Ar with a KrF excimer laser at 248 nm. A step-scan Fourier-transform infrared spectrometer coupled with a small multipass absorption cell was employed to detect time-resolved absorption spectrum of ClSO. A transient spectrum in the region 1120-1200 cm(-1), which diminished on prolonged reaction, is assigned to the S-O stretching (nu1) mode of ClSO. A spectrum with a resolution of 0.3 cm(-1) partially reveals rotational structure with the Q-branch at 1162.9 cm(-1). Calculations with density-functional theory (B3LYP/aug-cc-pVTZ) predict the geometry, vibrational, and rotational parameters of ClSO. An IR absorption spectrum of ClSO simulated based on predicted rotational parameters agrees satisfactorily with experimental results. ClSO produced from photolysis of Cl2SO at 248 nm is internally hot.
CH(3)OO radicals were produced upon irradiation of a flowing mixture of CH(3)I and O(2) with a KrF excimer laser at 248 nm. A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to record temporally resolved IR absorption spectra of reaction intermediates. Transient absorption bands with origins at 3033, 2954, 1453, 1408, 1183, 1117, 3020, and 1441 cm(-1) are assigned to nu(1)-nu(6), nu(9), and nu(10) modes of CH(3)OO, respectively, close to wavenumbers reported for CH(3)OO isolated in solid Ar. Calculations with density-functional theory (B3LYP/aug-cc-pVTZ) predicted the geometry and the vibrational wavenumbers of CH(3)OO; the vibrational wavenumbers and relative IR intensities of CH(3)OO agree satisfactorily with these observed features. The rotational contours of IR spectra of CH(3)OO, simulated based on ratios of predicted rotational parameters for the upper and lower states and on experimental rotational parameters of the ground state, agree satisfactorily with experimental results; the mixing ratios of a-, b-, and c-types of rotational structures were evaluated based on the direction of dipole derivatives predicted quantum chemically. A feature at 995 cm(-1), ascribed to CH(3)OOI from a secondary reaction of CH(3)OO with I, was also observed.
Our group has utilized a step-scan FTIR spectrometer operating in the absorption mode to characterize transient species in chemical reactions upon photo-irradiation of gaseous mixtures in a multipass White cell. The operational temporal resolution is typically 1-10 ms with spectral resolution 0.1-4 cm -1 , depending on conditions. The acquisition of both ac-and dc-coupled signals enables an extraction of minute changes in the large background signal to attain a typical detectable absorbance variation greater than 11 0 -4 . By consideration of reaction mechanisms and comparison of vibrational wavenumbers, IR intensities, and rotational contours predicted with theoretical calculations, we have assigned IR absorption bands of many important atmospheric free radicals and unstable species including their conformers, such as ClCO, ClSO, ClCS, ClCOOH, CH 3 SO 2 , CH 3 SOO, CH 3 OSO, CH 3 SO, CH 3 OO, CH 3 C(O)OO, CH 2 OO C 6 H 5 CO, C 6 H 5 SO 2 , and C 6 H 5 C(O)OO. The advantages and limitations of this technique to perform spectral and kinetic investigations of transient species in chemical reactions are discussed. (2010-). His main research interests focus on the spectroscopy, kinetics, and ion pumps of the photosynthetic proteins, using various time-resolved approaches including step-scan FTIR, nanosecond-resolved transient absorption, and electrochemical methods. Chiao Tung University. The main research topics pursued concern spectroscopy, kinetics and dynamics of free radicals or unstable species, using diverse methods including step-scan time-resolved FTIR (emission or absorption), matrix isolation using p-H 2 , cavity ringdown, IR-VUV photoionization, and ultrafast lasers. He has identified more than 70 new free radicals, most of which are important in atmospheric, combustion, or planetary chemistry. He has received numerous honors, and was elected asThe step-scan measurements are performed under the master mode of the spectrometer (Thermo Nicolet, NEXUS 870), in which the timing trigger is initiated by the spectrometer. Figure 3 CHEMICAL SOCIETY Fig. 5. Schematic of the White cell. The first and second IR beam paths and the first and second UV photolysis beam paths of the multiply reflected light are shown. Circular dots indicate images of the IR beam at each reflection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.