The first spatially and temporally resolved inventory of BDE28,47, 99, 153, 183, and 209 in the anthroposphere and environment is presented here. The stock and emissions of PBDE congeners were estimated using a dynamic substance flow analysis model, CiP-CAFE. To evaluate our results, the emission estimates were used as input to the BETR-Global model. Estimated concentrations were compared with observed concentrations in air from background areas. The global (a) in-use and (b) waste stocks of ∑ 5 BDE (28,47, 99, 153, 183) and BDE209 are estimated to be (a) ∼25 and 400 kt and (b) 13 and 100 kt, respectively, in 2018. A total of 6 (0.3−13) and 10.5 (9−12) kt of ∑ 5 BDE and BDE209, respectively, has been emitted to the atmosphere by 2018. More than 70% of PBDE emissions during production and use occurred in the industrialized regions, while more than 70% of the emissions during waste disposal occurred in the less industrialized regions. A total of 70 kt of ∑ 5 BDE and BDE209 was recycled within products since 1970. As recycling rates are expected to increase under the circular economy, an additional 45 kt of PBDEs (mainly BDE209) may reappear in new products.
The last few decades have seen ubiquitous and increasing contamination of chlorinated paraffins (CPs) worldwide. Here, we develop the first global inventories of production, use, in-use stocks, and emissions of total CPs, including the short-, medium- and long-chain components (SCCPs, MCCPs, and LCCPs) during 1930–2020 using a dynamic substance flow analysis model named Chemical in Products Comprehensive Anthroposhpheric Fate Estimation. The model estimates that a total of ∼33 million metric tons of CPs have been produced and used globally, ∼40% of which still resided in in-use products by 2020 and is available for long-term emissions in the next decades. Global cumulative emissions of CPs have increased to ∼5.2 million metric tons by 2020, with SCCPs, MCCPs, and LCCPs accounting for ∼30, 40, and 30%, respectively. While the production, use, and emissions of CPs started declining in regions such as Western Europe, they remain high in China. The model also suggests that homologues with 10, 14, and 22–23 carbons were predominant in the cumulatively produced and emitted SCCPs, MCCPs, and LCCPs, respectively. The emission estimates were evaluated by generating environmental concentrations that are comparable to literature-reported environmental monitoring data. Our estimates provide opportunities to link the environmental fate and occurrence of CPs to emission sources and lay the basis for future risk-reduction strategies of CPs around the world.
Humans are exposed to organic chemicals released to indoor air through near-field exposure routes such as air inhalation and nondietary dust ingestion as well as farfield exposure routes such as consumption of food. Here, we explore the relative importance of near-and far-field exposure routes and its variability between chemicals, age groups, and subpopulations, by modeling aggregate human exposure to indoor-released chemicals with diverse partitioning behavior and degradability. Our model results indicate that if chemicals are assumed to be perfectly persistent, dietary and nondietary ingestion dominates human exposure to hydrophobic chemicals of relatively low volatility (with an octanol−air partition coefficient K OA > 10 6.5 and an octanol−water partition coefficient K OW < 10 11 ), whereas inhalation of indoor air dominates human exposure to volatile chemicals. Other exposure routes, for example, dermal absorption and drinking water, make a relatively small contribution to human exposure. Reduced chemical persistence in environmental media and biota lowers the contribution of dietary ingestion. For most chemicals other than those with a K OA between 10 9 and 10 12 and a K OW between 10 6 and 10 9 (e.g., polybrominated diphenyl ethers), the relative importance of near-and far-field exposure routes is primarily governed by chemical partitioning and degradability rather than age-and population-dependent human exposure factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.