PurposeElderly cancer patients are at increased risk for malnutrition. We aim to identify comprehensive geriatric assessment (CGA) based clinical factors associated with increased nutritional risk and develop a clinical scoring system to identify nutritional risk in elderly cancer patients.Patients and MethodsCGA data was collected from 249 Asian patients aged 70 years or older. Nutritional risk was assessed based on the Nutrition Screening Initiative (NSI) checklist. Univariate and multivariate logistic regression analyses were applied to assess the association between patient clinical factors together with domains within the CGA and moderate to high nutritional risk. Goodness of fit was assessed using Hosmer-Lemeshow test. Discrimination ability was assessed based on the area under the receiver operating characteristics curve (AUC). Internal validation was performed using simulated datasets via bootstrapping.ResultsAmong the 249 patients, 184 (74%) had moderate to high nutritional risk. Multivariate logistic regression analysis identified stage 3–4 disease (Odds Ratio [OR] 2.54; 95% CI, 1.14–5.69), ECOG performance status of 2–4 (OR 3.04; 95% CI, 1.57–5.88), presence of depression (OR 5.99; 95% CI, 1.99–18.02) and haemoglobin levels <12 g/dL (OR 3.00; 95% CI 1.54–5.84) as significant independent factors associated with moderate to high nutritional risk. The model achieved good calibration (Hosmer-Lemeshow test’s p = 0.17) and discrimination (AUC = 0.80). It retained good calibration and discrimination (bias-corrected AUC = 0.79) under internal validation.ConclusionHaving advanced stage of cancer, poor performance status, depression and anaemia were found to be predictors of moderate to high nutritional risk. Early identification of patients with these risk factors will allow for nutritional interventions that may improve treatment tolerance, quality of life and survival outcomes.
The detection and identification of two endocytobiotic bacterial strains, one affiliated to the “Candidatus Caedibacter acanthamoebae”/“Ca. Paracaedimonas acanthamoeba”, and another to the endosymbiont of Acanthamoeba UWC8 and “Ca. Jidaibacter acanthamoeba” are described. For endocytobiont screening, we developed a PCR method with a set of broad-range bacterial 16S rRNA primers to substitute the commonly used but technically demanding fluorescent in situ hybridization technique. Our PCR test alone without sequencing failed to discriminate the endocytobiont-containing and endocytobiont-free Acanthamoeba sp. due to the presence of mismatched primers to host mitochondrial DNA. We highlighted the need to perform bacterial primer checking against the Acanthamoeba genome to avoid false positive detection in PCR. Although the genetic aspect of “Ca. Caedibacter acanthamoebae”/“Ca. Paracaedimonas acanthamoeba” and the endosymbiont of Acanthamoeba UWC8/“Ca. Jidaibacter acanthamoeba” are well studied, knowledge pertaining to their morphologies are quite vague. Hence, we used transmission electron microscopy to examine our endocytobionts which are affiliated to previously described intracellular bacteria of Acanthamoeba sp. We used good-quality TEM images for the localization and the fate of the current endocytobionts inside different life stages of the hosts. Furthermore, to the best of our knowledge, our TEM findings are the first to provide morphological evidence for the clearance of defective Acanthamoeba endocytobionts via an autophagic-like process.
Microporous polymeric matrices prepared from poly(ɛ-caprolactone) [PCL] were evaluated for controlled vaginal delivery of the antiprotozoal agent (tinidazole) in the treatment of the sexually transmitted infection, trichomoniasis. The matrices were produced by rapidly cooling co-solutions of PCL and tinidazole in acetone to -80 °C to induce crystallisation and hardening of the polymer. Tinidazole incorporation in the matrices increased from 1.4 to 3.9% (w/w), when the drug concentration in the starting PCL solution was raised from 10 to 20% (w/w), giving rise to drug loading efficiencies up to 20%. Rapid 'burst release' of 30% of the tinidazole content was recorded over 24 h when the PCL matrices were immersed in simulated vaginal fluid. Gradual drug release occurred over the next 6 days resulting in delivery of around 50% of the tinidazole load by day 7 with the released drug retaining antiprotozoal activity at levels almost 50% that of the 'non-formulated' drug in solution form. Basic modelling predicted that the concentration of tinidazole released into vaginal fluid in vivo from a PCL matrix in the form of an intravaginal ring would exceed the minimum inhibitory concentration against Trichomonas vaginalis. These findings recommend further investigation of PCL matrices as intravaginal devices for controlled delivery of antiprotozoal agents in the treatment and prevention of sexually transmitted infections.
Several bacterial species cause post-operative infections, which has been a critical health concern among hospital patients. Our study in this direction is a much-needed exploratory study that was carried out at the National Heart Institute (IJN) of Malaysia to examine the virulence properties of causative bacteria obtained from postoperative patients. The bacterial isolates and data were provided by the IJN. Antibiotic resistance gene patterns, and the ability to form biofilm were investigated for 127 isolates. Klebsiella pneumoniae (36.2%) was the most common isolate collected, which was followed by Pseudomonas aeruginosa (26%), Staphylococcus aureus (23.6%), Streptococcus spp. (8.7%) and Acinetobacter baumannii (5.5%). There were 49 isolates that showed the presence of multidrug resistance genes. The mecA gene was surprisingly found in methicillin-susceptible S. aureus (MSSA), which also carried the ermA gene from those erythromycin-susceptible strains. The phenotypic antibiotic resistance profiles varied greatly between isolates. Findings from the biofilm assay revealed that 44 of the 127 isolates demonstrated the ability to produce biofilms. Our findings provide insights into the possibility of some of these bacteria surviving under antibiotic stress, and some antibiotic resistance genes being silenced.
Background The commercial cultured milk drinks contain either single or mixed probiotic species and supply in different serving sizes. It is known that different combinations of probiotics might provide the various products’ quality in terms of nutritional value during their manufacturing process. However, a lack of information about probiotic viability and physicochemical properties of the opened fermented products for continuous fermentation leads to the driving force in conducting this study. Therefore, four locally available cultured milk drinks (branded Y, F, N and V) with 20 bottles each were aseptically transferred into their respective sterile containers and stored at 4 °C, 25 °C and − 20 °C for 1–13 days. Then, the viable cells were quantified using the drop plate method on de Man, Rogosa and Sharpe (MRS) agar. The pH change was investigated using the calibrated pH meter, and the Enzytec D-/L-Lactic acid kit determined the content of D-lactic acid via spectrophotometer. Eventually, the data were analysed using the statistical tool. Results The viability of probiotics in brands Y and V was significantly increased even when stored at − 20 °C and 4 °C with at least 1 log CFU/mL increment. The proliferation of probiotics was moderately influenced by the pH of the opened cultured milk. High content of D-lactate was found in Y- and F-branded products after 13 days of storage. The Y-branded cultured milk drink had the highest content of D-lactate with 0.52 g/L and 0.40 g/L when stored for 13 days at room temperature and 4 °C, respectively. Conclusions This study sheds light on the necessity to elucidate the properties of opened probiotic beverages over time, especially when bottled in large quantities. This allows some improvement steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.