Plant microbiomes are essential to host health and productivity but the ecological processes that govern crop microbiome assembly are not fully known. Here we examined bacterial communities across 684 samples from soils (rhizosphere and bulk soil) and multiple compartment niches (rhizoplane, root endosphere, phylloplane, and leaf endosphere) in maize (Zea mays)-wheat (Triticum aestivum)/barley (Hordeum vulgare) rotation system under different fertilization practices at two contrasting sites. Our results demonstrate that microbiome assembly along the soil-plant continuum is shaped predominantly by compartment niche and host species rather than by site or fertilization practice. From soils to epiphytes to endophytes, host selection pressure sequentially increased and bacterial diversity and network complexity consequently reduced, with the strongest host effect in leaf endosphere. Source tracking indicates that crop microbiome is mainly derived from soils and gradually enriched and filtered at different plant compartment niches. Moreover, crop microbiomes were dominated by a few dominant taxa (c. 0.5% of bacterial phylotypes), with bacilli identified as the important biomarker taxa for wheat and barley and Methylobacteriaceae for maize. Our work provides comprehensive empirical evidence on host selection, potential sources and enrichment processes for crop microbiome assembly, and has important implications for future crop management and manipulation of crop microbiome for sustainable agriculture.
Homeostasis in adult tissues is maintained by resident stem cells and their progeny. Little is known about the regulation of tissue homeostasis by organ-organ interaction. Here we demonstrate that trachea-derived Decapentaplegic (Dpp), the main bone morphogenetic protein ligand in Drosophila, is essential for adult midgut homeostasis. We show that Dpp signaling is primarily activated in enterocytes (ECs). Depletion of Dpp signaling in ECs results in excess amounts of intestinal stem-cell-like cells and their progeny. Importantly, we find that Dpp is expressed specifically in tracheal cells that reach the intestinal cells through the visceral muscles. Depletion of dpp expression in tracheal cells phenocopies the Dpp loss-of-function defects in ECs. Our data demonstrate that the Drosophila trachea not only exchanges air for bodily needs but also produces a Dpp morphogen essential for neighboring tissue homeostasis. This work will provide important insights into the mechanisms of tissue homeostasis control by interorgan communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.