We examine the fermionic response in a holographic model of a low temperature striped phase, working for concreteness with the setup we studied in [1,2], in which a U(1) symmetry and translational invariance are broken spontaneously at the same time. We include an ionic lattice that breaks translational symmetry explicitly in the UV of the theory. Thus, this construction realizes spontaneous crystallization on top of a background lattice. We solve the Dirac equation for a probe fermion in the associated background geometry using numerical techniques, and explore the interplay between spontaneous and explicit breaking of translations. We note that in our model the breaking of the U(1) symmetry doesn't play a role in the analysis of the fermionic spectral function. We investigate under which conditions a Fermi surface can form and focus in particular on how the ionic lattice affects its structure. When the ionic lattice becomes sufficiently strong the spectral weight peaks broaden, denoting a gradual disappearance of the Fermi surface along the symmetry breaking direction. This phenomenon occurs even in the absence of spontaneously generated stripes. The resulting Fermi surface appears to consist of detached segments reminiscent of Fermi arcs.
We investigate the behaviors of entanglement entropy in the holographical insulator/superconductor phase transition. We calculate the holographic entanglement entropy for two kinds of geometry configurations in a completely back-reacted gravitational background describing the insulator/superconductor phase transition. The non-monotonic behavior of the entanglement entropy is found in this system. In the belt geometry case, there exist four phases characterized by the chemical potential and belt width.
We establish a no inner-horizon theorem for black holes with charged scalar hairs. Considering a general gravitational theory with a charged scalar field, we prove that there exists no inner Cauchy horizon for both spherical and planar black holes with non-trivial scalar hair. The hairy black holes approach to a spacelike singularity at late interior time. This result is independent of the form of scalar potentials as well as the asymptotic boundary of spacetimes. We prove that the geometry near the singularity takes a universal Kasner form when the kinetic term of the scalar hair dominates, while novel behaviors different from the Kasner form are uncovered when the scalar potential become important to the background. For the hyperbolic horizon case, we show that hairy black hole can only has at most one inner horizon, and a concrete example with an inner horizon is presented. All these features are also valid for the Einstein gravity coupled with neutral scalars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.