This work reports the study on the evolution of native defects in ZnO nanorods irradiated with hydrogen ion. ZnO nanorod arrays grown vertically on silicon substrates were irradiated by 180 keV H+ ions to a total fluence of 8.50 × 1015 ions/cm2. The X-ray diffraction spectra, photoluminescence spectra before and after irradiation and the real-time ionoluminescence spectra of the nanorod arrays during the irradiating process were measured. Formation and evolution of defects during H+ ion irradiation and effects of irradiation on the crystal structure and optical property were studied. Blue shift of exciton emission, shrink of lattice c and improvement of the crystallinity of ZnO nanorods after irradiation were observed. Simple surface passivation of the nanorods could improve the radiation resistance. Formation and evolution of the defects during H+ ion irradiation could be clarified into four stages and the related models are provided.
High quality zinc blende ZnSe nanocrystals were successfully synthesized using an environmentally friendierly phosphine-free method. Using pre-synthesized ZnSe nanocrystals as core to dope Cu2+ ions, we obtained ZnSe:Cu/ZnSe and ZnSe:Cu/ZnSe/ZnS core/shell nanocrystals. Absorption spectruscopy, photoluminescence (PL) spectruscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize the structures and properties of as-synthesized three kinds of nanocrystals. The results demonstrated that nanocrystals had well dispersion and narrow size-distributions, and the PL emission peak of as-synthesized ZnSe:Cu/ZnSe/ZnS core/shell nanocrystals could be easily tuned from 480 nm to 520 nm by using different sized ZnSe cores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.