The G9a histone methyltransferase inhibitor BIX01294 was examined for its ability to expand the cardiac capacity of bone marrow cells. Inhibition of G9a histone methyltransferase by gene specific knockdown or BIX01294 treatment was sufficient to induce expression of precardiac markers Mesp1 and brachyury in bone marrow cells. BIX01294 treatment also allowed bone marrow mesenchymal stem cells (MSCs) to express the cardiac transcription factors Nkx2.5, GATA4, and myocardin when subsequently exposed to the cardiogenic stimulating factor Wnt11. Incubation of BIX01294-treated MSCs with cardiac conditioned media provoked formation of phase bright cells that exhibited a morphology and molecular profile resembling similar cells that normally form from cultured atrial tissue. Subsequent aggregation and differentiation of BIX01294-induced, MSC-derived phase bright cells provoked their cardiomyogenesis. This latter outcome was indicated by their widespread expression of the primary sarcomeric proteins muscle α-actinin and titin. MSC-derived cultures that were not initially treated with BIX01294 exhibited neither a commensurate burst of phase bright cells nor stimulation of sarcomeric protein expression. Collectively, these data indicate that BIX01294 has utility as a pharmacological agent that could enhance the ability of an abundant and accessible stem cell population to regenerate new myocytes for cardiac repair.
Introduction: Feruloyl Sucrose Esters (FSEs) are a class of Phenylpropanoid Sucrose Esters (PSEs) widely distributed in plants. They were investigated as potential selective Alpha Glucosidase Inhibitors (AGIs) to eliminate the side effects associated with the current commercial AGIs. The latter effectively lowers blood glucose levels in diabetic patients but causes severe gastrointestinal side effects. Methods: Systematic structure-activity relationship (SAR) studies using in silico, in vitro and in vivo experiments were used to accomplish this aim. FSEs were evaluated for their in vitro inhibition of starch and oligosaccharide digesting enzymes α-glucosidase and α-amylase followed by in silico docking studies to identify the binding modes. A lead candidate, FSE 12 was investigated in an STZ mouse model. Results: All active FSEs showed desired higher % inhibition of α-glucosidase and desired lower inhibition of α-amylase in comparison to AGI gold standard acarbose. This suggests a greater selectivity of the FSEs towards α-glucosidase than α-amylase, which is proposed to eliminate the gastrointestinal side effects. From the in vitro studies, the position and number of the feruloyl substituents on the sucrose core, the aromatic ‘OH’ group, and the diisopropylidene bridges were key determinants of the % inhibition of α-glucosidase and α-amylase. In particular, the diisopropylidene bridges are critical for achieving inhibition selectivity. Molecular docking studies of the FSEs corroborates the in vitro results. The molecular docking studies further reveal that the presence of free aromatic ‘OH’ groups and the substitution at position 3 on the sucrose core are critical for the inhibition of both the enzymes. From the in vitro and molecular docking studies, FSE 12 was selected as a lead candidate for validation in vivo. The oral co-administration of FSE 12 with starch abrogated the increase in post-prandial glucose and significantly reduced blood glucose excursion in STZ-treated mice compared to control (starch only) mice. Conclusion: Our studies reveal the potential of FSEs as selective AGIs for the treatment of diabetes, with a hypothetical reduction of side effects associated with commercial AGIs.
Carbon nanotubes (CNTs) possess well‐defined structural and chemical characteristics coupled with a large surface area that makes them ideal as sorbent materials for applications where adsorption processes are required. The adsorption properties of carboxylated derivatives of multiwalled carbon nanotubes (COOH‐MWCNT) and singlewalled carbon nanotubes (COOH‐SWCNT), together with their nonfunctionalized counterparts (MWCNT and SWCNT) for 48 common atmospheric volatile organic compounds (VOCs) were determined using thermal desorption–gas chromatography/mass spectrometry (TD‐GCMS). The CNTs exhibited similar recoveries for many of the VOCs compared to the standard sorbent materials, Carbopack X and Tenax TA. However, VOCs with electron donor–acceptor (EDA) properties such as carbonyls, alkenes, and alcohols exhibited poorer recoveries on all CNTs compared to Carbopack X and Tenax TA. The poor recoveries of VOCs from the CNTs has important implications for the long term use and storage of CNTs, because it demonstrates that they will become progressively more contaminated with common atmospheric VOCs, therefore potentially affecting their surface‐based properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.