This paper focuses on the problem of intelligent evacuation route planning for emergencies, including natural and human resource disasters and epidemic disasters, such as the COVID-19 pandemic. The goal of this study was to quickly generate an evacuation route for a community for victims to be evacuated to safe areas as soon as possible. The evacuation route planning problem needs to determine appropriate routes and allocate a specific number of victims to each route. This paper formulates the problem as a maximum flow problem and proposes a binary search algorithm based on a maximum flow algorithm, which is an intelligent optimization evacuation route planning algorithm for the community. Furthermore, the formulation is a nonlinear optimization problem because each route’s suggested evacuation time is a convex nonlinear function of the number of victims assigned to that route. Finally, numerical examples and Matlab simulations demonstrate not only the algorithm’s effectiveness, but also that the algorithm has low complexity and high precision. The study’s findings offer a practical solution for nonlinear models of evacuation route planning, which will be widely used in human society and robot path planning schemes.
In order to alleviate bottlenecks such as the lack of professional teachers, inattention during training processes,and low effectiveness in concentration training, we have proposed an immersive human–robot interactive (HRI) game framework based on deep learning for children’s concentration training and demonstrated its use through human–robot interactive games based on gesture recognition. The HRI game framework includes four functional modules: video data acquisition, image recognition modeling, a deep learning algorithm (YOLOv5), and information feedback. First, we built a gesture recognition model containing 10,000 pictures of children’s gestures, using the YOLOv5 algorithm. The average accuracy in recognition trainingwas 98.7%. Second, we recruited 120 children with attention deficits (aged from 9 to 12 years) to play the HRI games, including 60 girls and 60 boys. In the HRI game experiment, we obtained 8640 sample data, which were normalized and processed.According to the results, we found that the girls had better visual short-term memory and a shorter response time than boys. The research results showed that HRI games had a high efficacy, convenience, and full freedom, making them appropriate for children’s concentration training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.