The global epidemic of COVID-19 makes people realize that wearing a mask is one of the most effective ways to protect ourselves from virus infections, which poses serious challenges for the existing face recognition system. To tackle the difficulties, a new method for masked face recognition is proposed by integrating a cropping-based approach with the Convolutional Block Attention Module (CBAM). The optimal cropping is explored for each case, while the CBAM module is adopted to focus on the regions around eyes. Two special application scenarios, using faces without mask for training to recognize masked faces, and using masked faces for training to recognize faces without mask, have also been studied. Comprehensive experiments on SMFRD, CISIA-Webface, AR and Extend Yela B datasets show that the proposed approach can significantly improve the performance of masked face recognition compared with other state-of-the-art approaches.
Breast cancer is type of tumor that occurs in the tissues of the breast. It is most common type of cancer found in women around the world and it is among the leading causes of deaths in women. This paper presents the comparative analysis of machine learning, deep learning and data mining techniques being used for the prediction of breast cancer. Many researchers have put their efforts on breast cancer diagnoses and prognoses, every technique has different accuracy rate and it varies for different situations, tools and datasets being used. Our main focus is to comparatively analyze different existing Machine Learning and Data Mining techniques in order to find out the most appropriate method that will support the large dataset with good accuracy of prediction. The main purpose of this review is to highlight all the previous studies of machine learning algorithms that are being used for breast cancer prediction and this paper provides the all necessary information to the beginners who want to analyze the machine learning algorithms to gain the base of deep learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.