With the rapid development of urbanization in China, monitoring urban changes is of great significance to city management, urban planning, and cadastral map updating. Spaceborne synthetic aperture radar (SAR) sensors can capture a large area of radar images quickly with fine spatiotemporal resolution and are not affected by weather conditions, making multi-temporal SAR images suitable for change detection. In this paper, a new urban building change detection method based on an improved difference image and residual U-Net network is proposed. In order to overcome the intensity compression problem of the traditional log-ratio method, the spatial distance and intensity similarity are combined to generate a weighting function to obtain a weighted difference image. By fusing the weighted difference image and the bitemporal original images, the three-channel color difference image is generated for building change detection. Due to the complexity of urban environments and the small scale of building changes, the residual U-Net network is used instead of fixed statistical models and the construction and classifier of the network are modified to distinguish between different building changes. Three scenes of Sentinel-1 interferometric wide swath data are used to validate the proposed method. The experimental results and comparative analysis show that our proposed method is effective for urban building change detection and is superior to the original U-Net and SVM method.
With the rapid development of urbanization, timely and accurate information on the spatial distribution of urban areas is essential for urban planning, environmental protection and sustainable urban development. To date, the main problem of urban mapping using synthetic aperture radar (SAR) data are that nonbuilding objects with high backscattering cause high false alarms, while small-scale buildings with low backscattering result in omission errors. In this paper, a robust building-area extraction extractor is proposed to solve the above problems. The specific work includes (1) building a multiscale and multicategory building area dataset to learn enough building features in various areas; (2) designing a multiscale extraction network based on the residual convolutional block (ResNet50) and a pyramid-based pooling module to extract more discriminative features of building areas and introducing the focal loss item as the object function of the network to further extract the small-scale building areas and (3) eliminating the false alarms using the Normalized Difference Vegetation Index (NDVI) and Modified Normalized Difference Water Index (MNDWI) index. GF-3 SAR data with a 10-m resolution of four regions in China are used to validate our method, and the regional building-area mapping results with overall accuracy above 85% and kappa coefficient not less than 0.73 are obtained. Compared with the current popular networks and the global human settlement layer (GHSL) product, our method shows better extraction results and higher accuracy in multiscale building areas. The experiments using Sentinel-1 and ALOS-2/PALSAR-2 data show that the proposed method has good robustness with different SAR data sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.