Glycolysis is critical for cancer stem cell reprogramming; however, the underlying regulatory mechanisms remain elusive. Here, we show that pyruvate dehydrogenase kinase 1 (PDK1) is enriched in breast cancer stem cells (BCSCs), whereas depletion of PDK1 remarkably diminishes ALDH+ subpopulations, decreases stemness-related transcriptional factor expression, and inhibits sphere-formation ability and tumor growth. Conversely, high levels of PDK1 enhance BCSC properties and are correlated with poor overall survival. In mouse xenograft tumor, PDK1 is accumulated in hypoxic regions and activates glycolysis to promote stem-like traits. Moreover, through screening hypoxia-related long non-coding RNAs (lncRNAs) in PDK1-positive tissue, we find that lncRNA H19 is responsible for glycolysis and BCSC maintenance. Furthermore, H19 knockdown decreases PDK1 expression in hypoxia, and ablation of PDK1 counteracts H19-mediated glycolysis and self-renewal ability in vitro and in vivo. Accordingly, H19 and PDK1 expression exhibits strong correlations in primary breast carcinomas. H19 acting as a competitive endogenous RNA sequesters miRNA let-7 to release Hypoxia-inducible factor 1α, leading to an increase in PDK1 expression. Lastly, aspirin markedly attenuates glycolysis and cancer stem-like characteristics by suppressing both H19 and PDK1. Thus, these novel findings demonstrate that the glycolysis gatekeeper PDK1 has a critical role in BCSC reprogramming and provides a potential therapeutic strategy for breast malignancy.
Salvianolic acid A (SalA), one of the most efficacious polyphenol compounds extracted from Radix Salvia miltiorrhiza (Danshen), has been shown to possess many potential pharmacological activities. This study aimed to investigate whether SalA has hepatoprotective effects against high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and to further explore the mechanism underlying this process. SalA treatment significantly attenuated HFD-induced obesity and liver injury, and markedly decreased lipid accumulation in HFD-fed rat livers. Moreover, SalA treatment ameliorated HFD-induced hepatic inflammation and oxidative stress by decreasing hepatotoxic levels of cytokines, suppressing the overproduction of reactive oxygen species (ROS) and methane dicarboxylic aldehyde (MDA) and preventing the decreased expression of superoxide dismutase (SOD). Importantly, SalA reversed the HFD- or palmitic acid (PA)-induced activation of the NLRP3 inflammasome, the nuclear translocation of ChREBP and the up-regulation of FAS, and these effects were accompanied by TXNIP down-regulation. However, TXNIP siRNA treatment partially abrogated the above-mentioned effects of SalA in PA-treated HepG2 cells. Together, our results demonstrated, for the first time, that SalA protects against HFD-induced NAFLD by ameliorating hepatic lipid accumulation and inflammation, and these protective effects may partially due to regulation of the TXNIP/NLRP3 and TXNIP/ChREBP pathways.
Hepatocellular carcinoma (HCC) is a common malignant tumor that severely threatens human health. The poor prognosis of HCC is mainly attributed to intrahepatic and extrahepatic metastases. HOXD9 proteins belong to a superfamily that regulates the development and control of many cellular processes, including proliferation, apoptosis, cell shape, and cell migration. HOXD9 can also function as an oncogene in several cancer cells. However, its biological function in human HCC requires further investigation. In this study, HOXD9 exhibited high expression in invasive HCC cells. HOXD9 overexpression can significantly enhance HCC cell migration, invasion, and metastasis, whereas silencing HOXD9 inhibits these processes. HOXD9 also promotes the epithelial–mesenchymal transition (EMT) of HCC cells. Microarray analysis suggests that ZEB1 can function as a downstream factor of HOXD9. HOXD9 can interact with the promoter region of ZEB1 and promotes ZEB1 expression. ZEB1 knockdown inhibits HOXD9-induced migration and invasion, as well as EMT in HCC cells. This study helps elucidates the oncogenic functions of HOXD9 in HCC.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-015-0245-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.