For all involved in astronomy, the importance of monitoring and determining astrophysical magnetic-field strengths is clear. It is also a well-known fact that the corona magnetic fields play an important part in the origin of solar flares and the variations of space weather. However, after many years of solar corona studies, there is still no direct and continuous way to measure and monitor the solar magnetic-field strength. We present here a scheme that allows such a measurement, based on a careful study of an exotic class of atomic transitions, known as magnetic induced transitions, in Fe9+. In this contribution we present a first application of this methodology and determine a value of the coronal field strength using the spectroscopic data from Hinode.
Accurate and extensive atomic data are essential for spectroscopic analyses of stellar atmospheres and other astronomical objects. We present energy levels, lifetimes, and transition probabilities for neutral nitrogen, the sixth most abundant element in the cosmos. The calculations employ the fully relativistic multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction methods, and span the 103 lowest states up to and including 2s 2 2p 2 5s. Our theoretical energies are in excellent agreement with the experimental data, with an average relative difference of 0.07%. In addition, our transition probabilities are in good agreement with available experimental and theoretical data. We further verify the agreement of our data with experimental results via a re-analysis of the solar nitrogen abundance, with the results from the Babushkin and Coulomb gauges consistent to 2% or 0.01 dex. We estimated the uncertainties of the computed transition data based on a statistical analysis of the differences between the transition rates in Babushkin and Coulomb gauges. Out of the 1701 computed electric dipole transitions in this work, 83 (536) are associated with uncertainties less than 5% (10%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.