Polymers with the ability to repair themselves after sustaining damage could extend the lifetimes of materials used in many applications 1 . Most approaches to healable materials require heating the damaged area [2][3][4] . Here we present metallosupramolecular polymers that can be mended through exposure to light. They consist of telechelic, rubbery, low-molecular-mass polymers with ligand end groups that are non-covalently linked through metal-ion binding. On exposure to ultraviolet light, the metal-ligand motifs are electronically excited and the absorbed energy is converted into heat. This causes temporary disengagement of the metal-ligand motifs and a concomitant reversible decrease in the polymers' molecular mass and viscosity 5 , thereby allowing quick and efficient defect healing. Light can be applied locally to a damage site, so objects can in principle be healed under load. We anticipate that this approach to healable materials, based on supramolecular polymers and a light-heat conversion step, can be applied to a wide range of supramolecular materials that use different chemistries.The healing of cracks in amorphous polymers by heating above the glass transition temperature (T g ) involves surface rearrangement and approach of polymer chains, followed by wetting, diffusion and reentanglement of the chains 6 . Because the rates of the final two steps are inversely proportional to the molecular mass, healing is generally slow and inefficient. This problem can be overcome by exploiting thermally reversible, covalent bonds 7,8 or non-covalent supramolecular motifs 5,9,10 that allow the reaction equilibrium to be temporarily shifted to lower-molecular-mass species 11 on exposure to heat. This reduces the viscosity of the material, such that defects can be mended, before the equilibrium is shifted back and the polymer is reformed. Supramolecular polymers that phase separate into physically crosslinked networks (Fig. 1a) should be especially well suited for this purpose, because such morphologies generally bestow the material with high toughness. The supramolecular motifs can disengage in the solid state on exposure to heat or a competitive binding agent 12,13 , causing disassembly into small molecules 14 and viscosity reductions. Reporting a series of supramolecular materials formed by metal-ligand interactions, we demonstrate here that this architecture is an excellent basis for elastomeric materials in which defects can be efficiently repaired. We show that the use of light 15 as a stimulus for the dissociation of supramolecular motifs has distinct advantages over thermally healable systems, including the possibility of exclusively exposing and healing the damaged region.The new polymers are based on a macromonomer comprising a rubbery, amorphous poly(ethylene-co-butylene) core with 2,6-bis(19-methylbenzimidazolyl)pyridine (Mebip) ligands at the termini (Fig. 1b, 3). This design was based on the assumption that the hydrophobic core and the polar metal-ligand motif would phase separate 16 . Metal-Mebip com...
New nanocomposites composed of cellulose nanofibers or "whiskers" and an epoxy resin were prepared. Cellulose whiskers with aspect ratios of ∼10 and ∼84 were isolated from cotton and sea animals called tunicates, respectively. Suspensions of these whiskers in dimethylformamide were combined with an oligomeric difunctional diglycidyl ether of bisphenol A with an epoxide equivalent weight of 185-192 and a diethyl toluenediamine-based curing agent. Thin films were produced by casting these mixtures and subsequent curing. The whisker content was systematically varied between 4 and 24% v/v. Electron microscopy studies suggest that the whiskers are evenly dispersed within the epoxy matrix. Dynamic mechanical thermoanalysis revealed that the glass transition temperature (T g ) of the materials was not significantly influenced by the incorporation of the cellulose filler. Between room temperature and 150°C, i.e., below T g , the tensile storage moduli (E′) of the nanocomposites increased modestly, for example from 1.6 GPa for the neat polymer to 4.9 and 3.6 GPa for nanocomposites comprising 16% v/v tunicate or cotton whiskers. The relative reinforcement was more significant at 185°C (i.e., above T g ), where E′ was increased from ∼16 MPa (neat polymer) to ∼1.6 GPa (tunicate) or ∼215 MPa (cotton). The mechanical properties of the new materials are well-described by the percolation model and are the result of the formation of a percolating whisker network in which stress transfer is facilitated by strong interactions between the whiskers.
A hybridized structure constructed by zigzag boron nitride nanoribbon and zigzag graphene nanoribbon is proposed, and their band structures and electronic transport properties are calculated by applying first-principles calculations. The results show that the band gap of the hybridized structure can be tuned and transitions from insulator to metal can be realized by changing the unit number of zigzag graphene nanoribbon. The currents with different spin polarization display different behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.