The interactions among dissolved organic matter (DOM), microplastics (MPs) and microbes influence the fate of aqueous carbon and greenhouse gas emissions. However, the related processes and mechanisms remain unclear. Here, we found that MPs determined the fate of aqueous carbon by influencing biodiversity and chemodiversity. MPs release chemical additives such as diethylhexyl phthalate (DEHP) and bisphenol A (BPA) into the aqueous phase. The microbial community, especially autotrophic bacteria such as Cyanobacteria, showed a negative correlation with the additives released from MPs. The inhibition of autotrophs promoted CO 2 emissions. Meanwhile, MPs stimulated microbial metabolic pathways such as the tricarboxylic acid (TCA) cycle to accelerate the DOM biodegradation process, and then the transformed DOM presented low bioavailability, high stability, and aromaticity. Our findings highlight an urgent need for chemodiversity and biodiversity surveys to assess ecological risks from MP pollution and the impact of MPs on the carbon cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.