Calcium phosphate (CaP) is frequently used as coating for bone implants to promote osseointegration. However, commercial CaP coatings via plasma spraying display similar microstructures, and thus fail to provide specific implants according to different surgical conditions or skeletal bone sites. Herein, inspired by the formation of natural biominerals with various morphologies mediated by amorphous precursors, CaP coatings with tunable microstructures mediated by an amorphous metastable phase are fabricated. The microstructures of the coatings are precisely controlled by both polyaspartic acid and Mg 2+ . The cell biological behaviors, including alkaline phosphatase activity, mineralization, and osteogenesis-related genes expression, on the CaP coatings with different microstructures, exhibit significant differences. Furthermore, in vivo experiments demonstrate the osseointegration in different types of rats and bones indeed favors different CaP coatings. This biomimetic strategy can be used to fabricate customized bone implants that can meet the specific requirements of various surgery conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.