A central goal of HIV-1 vaccine research is the elicitation of antibodies capable of neutralizing diverse primary isolates of HIV-1. Here we show that focusing the immune response to exposed N-terminal residues of the fusion peptide, a critical component of the viral entry machinery and the epitope of antibodies elicited by HIV-1 infection, through immunization with fusion peptide-coupled carriers and prefusion stabilized envelope trimers, induces cross-clade neutralizing responses. In mice, these immunogens elicited monoclonal antibodies capable of neutralizing up to 31% of a cross-clade panel of 208 HIV-1 strains. Crystal and cryoelectron microscopy structures of these antibodies revealed fusion peptide conformational diversity as a molecular explanation for the cross-clade neutralization. Immunization of guinea pigs and rhesus macaques induced similarly broad fusion peptide-directed neutralizing responses, suggesting translatability. The N terminus of the HIV-1 fusion peptide is thus a promising target of vaccine efforts aimed at eliciting broadly neutralizing antibodies.
Following DNA damage, nuclear p53 induces the expression of PUMA, a BH3-only protein that binds and inhibits the anti-apoptotic BCL-2 repertoire, including BCL-xL. PUMA, unique amongst BH3-only proteins, disrupts the interaction between cytosolic p53 and BCL-xL, allowing p53 to promote apoptosis via direct activation of the BCL-2 effector molecules, BAX and BAK. Structural investigations using nuclear magnetic resonance spectroscopy and X-ray crystallography revealed that PUMA binding induced partial unfolding of two α-helices within BCL-xL. Wild-type PUMA or a PUMA mutant incapable of causing binding-induced unfolding of BCL-xL equivalently inhibited the anti-apoptotic BCL-2 repertoire to sensitize for death receptor (DR)-activated apoptosis, but only wild-type PUMA promoted p53-dependent, DNA damage-induced apoptosis. Our data suggest that PUMA-induced partial unfolding of BCL-xL disrupts interactions between cytosolic p53 and BCL-xL, releasing the bound p53 to initiate apoptosis. We propose that regulated unfolding of BCL-xL provides a mechanism to promote PUMA-dependent signaling within the apoptotic pathways.
Today, it is widely accepted that proteins that lack highly defined globular three-dimensional structures, termed IDPs (intrinsically disordered proteins), play key roles in myriad biological processes. Our understanding of how intrinsic disorder mediates biological function is, however, incomplete. In the present paper, we review disorder-mediated cell cycle regulation by two intrinsically disordered proteins, p21 and p27. A structural adaptation mechanism involving a stretchable dynamic linker helix allows p21 to promiscuously recognize the various Cdk (cyclin-dependent kinase)-cyclin complexes that regulate cell division. Disorder within p27 mediates transmission of an N-terminal tyrosine phosphorylation signal to a C-terminal threonine phosphorylation, constituting a signalling conduit. These mechanisms are mediated by folding upon binding p21/p27's regulatory targets. However, residual disorder within the bound state contributes critically to these functional mechanisms. Our studies provide insights into how intrinsic protein disorder mediates regulatory processes and opportunities for designing drugs that target cancer-associated IDPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.