Airway inflammation and remodeling in chronic asthma are characterized by airway eosinophilia, hyperplasia of goblet cells and smooth muscle, and subepithelial fibrosis. We examined the role of leukotrienes in a mouse model of allergen-induced chronic lung inflammation and fibrosis. BALB/c mice, after intraperitoneal ovalbumin (OVA) sensitization on Days 0 and 14, received intranasal OVA periodically Days 14-75. The OVA-treated mice developed an extensive eosinophil and mononuclear cell inflammatory response, goblet cell hyperplasia, and mucus occlusion of the airways. A striking feature of this inflammatory response was the widespread deposition of collagen beneath the airway epithelial cell layer and also in the lung interstitium in the sites of leukocytic infiltration that was not observed in the saline-treated controls. The cysteinyl leukotriene(1) (CysLT(1)) receptor antagonist montelukast significantly reduced the airway eosinophil infiltration, mucus plugging, smooth muscle hyperplasia, and subepithelial fibrosis in the OVA-sensitized/challenged mice. The presence of Charcot-Leyden-like crystals in airway macrophages and the increased interleukin (IL)-4 and IL-13 mRNA expression in lung tissue and protein in BAL fluid seen in OVA-treated mice were also inhibited by CysLT(1) receptor blockade. These data suggest an important role for cysteinyl leukotrienes in the pathogenesis of chronic allergic airway inflammation with fibrosis.
Leukotrienes are important mediators of the eosinophilic influx and mucus hypersecretion in the lungs in a murine model of asthma. We used in situ PCR in this model of human asthma to detect lung mRNA for 5-lipoxygenase (5-LO) and 5-LO-activating protein (FLAP), key proteins necessary for leukotriene synthesis. Lung tissue was obtained on day 28 from mice treated with i.p. (days 0 and 14) and intranasal (days 14, 25, 26, and 27) OVA or saline. After fixation, the tissue sections underwent protease- and RNase-free DNase digestion, before in situ RT-PCR using target-specific cDNA amplification. 5-LO and FLAP-specific mRNA was visualized by a digoxigenin detection system, and positive cells were analyzed by morphometry. 5-LO and FLAP-specific mRNA and protein were associated primarily with eosinophils and alveolar macrophages in the airways and pulmonary blood vessels in OVA-sensitized/challenged mice. 5-LO and FLAP protein expression increased on a per-cell basis in alveolar macrophages of OVA-treated mice compared with saline controls. Pulmonary blood vessel endothelial cells were also positive for 5-LO, FLAP mRNA, and protein. 5-LO inhibition significantly decreased 5-LO and FLAP-specific mRNA and protein expression in the lung inflammatory cells and endothelial cells. These studies demonstrate a marked increase in key 5-LO pathway proteins in the allergic lung inflammatory response and an important immunomodulatory effect of leukotriene blockade to decrease 5-LO and FLAP gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.