Zebra chip disease, putatively caused by the bacterium 'Candidatus Liberibacter solanacearum', is of increasing concern to potato production in Mexico, the United States, and New Zealand. However, little is known about the etiology of this disease and changes that occur within host tubers that result in its symptoms. Previous studies found that increased levels of phenolics, amino acids, defense proteins, and carbohydrates in 'Ca. L. solanacearum'-infected tubers are associated with symptoms of zebra chip. This study was conducted to quantify variations in levels of these biochemical components in relation to the time of infestation, symptom severity, and 'Ca. L. solanacearum' titer. Levels of phenolics, peroxidases, polyphenol oxidases, and reducing sugars (glucose and, to some extent, fructose) changed during infection, with higher levels occurring in tubers infected at least 5 weeks before harvest than in those infected only a week before harvest and those of controls. Compared with the apical tuber ends, greater levels of phenolics, peroxidases, and sucrose occurred at the basal (stolon attachment) end of infected tubers. With the exception of phenolics, concentrations of the evaluated compounds were not associated with 'Ca. L. solanacearum' titer. However, there were significant associations between biochemical responses and symptom severity. The lack of a linear correlation between most plant biochemical responses and 'Ca. L. solanacearum' titer suggests that shifts in metabolic profiles are independent of variations in 'Ca. L. solanacearum' levels.
With diseases caused by vector-borne plant pathogens, acquisition and inoculation are two primary stages of the transmission, which can determine vector efficiency in spreading the pathogen. The present study was initiated to quantify acquisition and inoculation successes of 'Candidatus Liberibacter solanacearum', the etiological agent of zebra chip disease of potato, by its psyllid vector, Bactericera cockerelli (Hemiptera: Triozidae). Acquisition success was evaluated in relation to feeding site on the host plant as well as the acquisition access period. Inoculation success was evaluated in relation to vector number (1 and 4) on the plants. Acquisition success was influenced by the feeding site on the plant. The highest acquisition success occurred when insects had access to the whole plant. The results of the inoculation study indicated that the rate of successfully inoculated plants increased with the vector number. Plants inoculated with multiple psyllids had higher bacterial titer at the point of inoculation. Although disease incubation period was significantly shorter in plants inoculated with multiple psyllids, this effect was heterogeneous across experimental blocks, and was independent of pathogen quantity detected in the leaflets 3 days postinoculation. Disease progress was not affected by bacterial quantity injected or psyllid numbers.
A 2-year field study was conducted to evaluate plant susceptibility to ‘Candidatus Liberibacter solanacearum’, the putative causal agent of zebra chip disease (ZC). Incubation period of ZC, the rate of symptom progress, and the rate of pathogen population growth were evaluated for individual plants infested on different weeks after emergence. In foliage, incubation period was between 21 and 28 days. The pathogen was detected within leaf tissue in 3 to 4 weeks, regardless of the time of infestation. The rates of foliar symptom progress and pathogen population growth were uniform among all infestations. Although symptoms were observed in only 1.3% of tubers from plants infested 2 weeks before harvest, 74% of these tubers tested positive for the pathogen. There was a positive correlation between symptom severity and titer in the foliage. Within tubers, however, the relationship was negative but nonsignificant. Pathogen titer reached detectable levels some time between 7 to 14 days following infestation. Although yield reduction was significant only in plants infested during early stages of their growth, chemical management of potato psyllids needs to be continued until at least a week before harvest to minimize ZC impact on the tuber quality.
Background: Transcriptomic analyses were performed to compare the molecular responses of two potato varieties previously shown to differ in the severity of disease symptoms due to infection by "Candidatus Liberibacter solanacearum" (Lso), the causative agent of Zebra Chip in potato. A factorial design utilizing the two varieties and psyllids either harboring Lso or without bacteria was used to discriminate varietal responses to pathogen infection versus psyllid feeding. Plant response was determined from leaf samples 3 weeks after infection. Results: In response to Lso infection, 397 genes were differentially expressed in the variety Atlantic (most susceptible) as compared to 1027 genes in Waneta. Over 80% of the transcriptionally-changed genes were down-regulated in both varieties, including genes involved in photosynthesis or primary and secondary metabolism. Many of the Lso-responsive genes involved in stress responses or hormonal pathways were regulated differently in the two potato varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.