Rapid urbanization leads to changes in urban micro meteorology, such as the urban heat island effect and rain island effect, which eventually brings about urban waterlogging and other problems. In this study, the data of precipitation, temperatures and impervious surfaces with long series and high resolution are used to study the rain island effect in Jinan City, China. MK-Sen’s slope estimator, Pettitt test and Pearson correlation analysis are used to quantitatively analyze the effects of urban expansion on extreme climate indices. The results show that Jinan City has experienced rapid urbanization since the 1978 economic reform, and the impervious surface areas have increased from 311.68 km2 (3.04%) in 1978 to 2389.50 km2 (23.33%) in 2017. Urban expansion has a significant impact on temperature, with large variations in extreme temperature indices over the intensive construction area relative to the sparse construction area, as well as significant positive correlations with impervious surfaces. Jinan City shows a certain degree of rain island effect, which seems to be spatially correlated with the urban heat island effect. The frequency of short-duration precipitation events significantly increases and the intensity of precipitation events generally increases. The magnitude and frequency of extreme precipitation indices in the intensive construction area significantly increases when compared to that in the sparse construction area, and they have a significant correlation with impervious surfaces. The tendency of Jinan City’s precipitation regime center shifts toward the intensive construction area.
Although studies have proven that high-intensity interval training (HIIT) shows a comparable effect to moderate-intensity continuous training (MICT) on reducing body fat, especially visceral fat, the mechanism is still unclear. Since MICT consumes more fat during exercise, the mechanism of HIIT weight loss may be related to post-exercise effects, long-term adaptive changes, and hormone sensitive lipase (HSL). The objective of this study was to compare the post-effects of acute exercise, long-term adaptive changes on HSL activity, and catecholamine-induced lipolysis between HIIT and MICT. Following a 14-week high-fat diet (HFD), obese female C57Bl/6 mice were divided into acute exercise groups (one time training, sacrificed at rest and 0, 1, and 12 h after exercise, n = 49), -L groups (12-week long-term training, 12-h fasting, n = 21), and -C groups (12-week training, primary adipocytes were isolated and stimulated by catecholamine in vitro, n = 18). MICT or HIIT treadmill protocols (running distance matched) were carried out during training. Comparison of acute exercise effects by two-way ANOVA showed no time × group interaction effect, however, a significant increase in HSL-Ser563 (at 0 and 1 h) and Ser660 phosphorylation (at 0, 1, and 12 h) in inguinal (subcutaneous) fat was only observed in HIIT mice (p < 0.05 vs. rest), but not in MICT mice. The periuterine (visceral) fat HSL expression and phosphorylation of HIIT mice was similar to or lower than MICT mice. After long-term training, 12-h fasting significantly increased periuterine fat Ser563 phosphorylation in HIIT mice (p < 0.05), but there was no change in MICT mice. Under stimulation of catecholamine in vitro, isolated primary adipocytes from periuterine fat of long-term HIIT mice showed a higher Ser563 increase than that found in MICT mice (p < 0.05). The quantity of triglyceride (TG) lipid bonds (representing lipolysis level) was significantly lower after HIIT than MICT (p < 0.05). The results indicate that (1) acute HIIT can induce an increase of HSL phosphorylation in subcutaneous fat lasting at least 12 h, implying longer post-exercise lipolysis than MICT and (2) long-time HIIT has a better effect on improving catecholamine resistance of visceral adipocytes caused by a HFD, which allows fat to be mobilized more easily when stimulated.
Subway running brings people great convenience, but at the same time, complaints and disputes caused by the subway vibration and noise have occurred repeatedly, the subway vibration and noise generated during the operation is a noteworthy environmental problem, noise reduction technology and relatively sound legal has been an institutional system which trend to perfect in foreign countries, however, the specific laws and codes about subway noise is very imperfect in China. This paper focuses on the legal and technical to analysis the reduction of the subway vibration and noise.
Structural hemispheric asymmetry has long been assumed to guide functional asymmetry of the human brain, but empirical evidence for this compelling hypothesis remains scarce. Recently, it has been suggested that microstructural asymmetries may be more relevant to functional asymmetries than macrostructural asymmetries. To investigate the link between microstructure and function, we analyzed multimodal MRI data in 907 participants. We quantified structural and functional asymmetries of the planum temporale (PT), a cortical area crucial for auditory-language processing. We found associations of functional PT asymmetries and several microstructural asymmetries, such as intracortical myelin content, neurite density, and neurite orientation dispersion. The PT microstructure per se also showed hemispheric-specific coupling with PT functional activity. All these functional-structural associations are highly specific to within-PT functional activity during auditory-language processing. These results suggest that structural asymmetry guides functional lateralization of the same brain area and highlight a critical role of microstructural PT asymmetries in auditory-language processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.