Bringing together two C30 hemispheres by coordinating their concave faces to a monometal template or metal cluster represents the first step in an appealing strategy for the controlled synthesis of endohedral fullerene complexes by laboratory methods. A crystalline transition metal complex of this structural type (see picture; Rh blue, O red, C gray; H, F omitted) has now been prepared from hemibuckminsterfullerene C30H12 and [Rh2(O2CCF3)4].
In biomineralization, inorganic materials are formed with remarkable control of the shape and morphology. Chirality, as present in the biomolecular world, is therefore also common for biominerals. Biomacromolecules, like proteins and polysaccharides, are in direct contact with the mineral phase and act as modifiers during nucleation and crystal growth. Owing to their homochirality--they exist only as one of two possible mirror-symmetric isomers--their handedness is often transferred into the macroscopic shape of the biomineral crystals, but the way in which handedness is transmitted into achiral materials is not yet understood at the atomic level. By using the submolecular resolution capability of scanning tunnelling microscopy, supported by photoelectron diffraction and density functional theory, we show how the chiral 'buckybowl' hemibuckminsterfullerene arranges copper surface atoms in its vicinity into a chiral morphology. We anticipate that such new insight will find its way into materials synthesis techniques.
Neuropathic pain is a very common complication in diabetes mellitus (DM), and treatment for it is limited. As DM is becoming a global epidemic it is important to understand and treat this problem. The mechanisms of diabetic neuropathic pain are largely obscure. Recent studies have shown that glial cells are important for a variety of neuropathic pain types, and we investigated what are the changes that satellite glial cells (SGCs) in dorsal root ganglia undergo in a DM type 1 model, induced by streptozotocin (STZ) in mice and rats. We carried out immunohistochemical studies to learn about changes in the activation marker glial fibrillary acidic protein (GFAP) in SGCs. We found that after STZ-treatment the number of neurons surrounded with GFAP-positive SGCs in dorsal root ganglia increased 4-fold in mice and 5-fold in rats. Western blotting for GFAP, which was done only on rats because of the larger size of the ganglia, showed an increase of about 2-fold in STZ-treated rats, supporting the immunohistochemical results. These results indicate for the first time that SGCs are activated in rodent models of DM1. As SGC activation appears to contribute to chronic pain, these results suggest that SGCs may participate in the generation and maintenance of diabetic neuropathic pain, and can serve as a potential therapeutic target.
P2X receptors participate in cardiovascular regulation and disease. After myocardial ischemic injury, sensorysympathetic coupling between rat cervical DRG nerves and superior cervical ganglia (SCG) facilitated sympathoexcitatory action via P2X 7 receptor. The results showed that after myocardial ischemic injury, the systolic blood pressure, heart rate, serum cardiac enzymes, IL-6, and TNF-α were increased, while the levels of P2X 7 mRNA and protein in SCG were also upregulated. However, these alterations diminished after treatment of myocardial ischemic (MI) rats with the P2X 7 antagonist oxATP. After siRNA P2X 7 in MI rats, the systolic blood pressure, heart rate, serum cardiac enzymes, the expression levels of the satellite glial cell (SGC) or P2X 7 were significantly lower than those in MI group. The phosphorylation of ERK 1/2 in SCG participated in the molecular mechanism of the sympathoexcitatory action induced by the myocardial ischemic injury. Retrograde tracing test revealed the sprouting of CGRP or SP sensory nerves (the markers of sensory afferent fibers) from DRG to SCG neurons. The upregulated P2X 7 receptor promoted the activation of SGCs in SCG, resulting in the formation of sensory-sympathetic coupling which facilitated the sympathoexcitatory action. P2X 7 antagonist oxATP could inhibit the activation of SGCs and interrupt the formation of sensory-sympathetic coupling in SCG after the myocardial ischemic injury. Our findings may benefit the treatment of coronary heart disease and other cardiovascular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.