Prostate specific antigen (PSA) is a widely used serum marker for prostate cancer (PCa), but has limited specificity for distinguishing early PCa from benign prostatic hyperplasia (BPH). Recently, proPSAs, comprised of native proPSA, as well as truncated proPSA forms, [-2] proPSA, [-5] proPSA, and [-7] proPSA, have been shown to be better diagnostic targets than PSA for PCa. Stable isotope labeling-multiple reaction monitoring mass spectrometry (SIL/MRM-MS) has been frequently used to measure low-abundance biomarkers in tissues and biofluids, owing to its high sensitivity and specificity, simplicity, and multiplexing capability. In this study, we have developed and optimized a strategy using immunoprecipitation in conjunction with SIL/MRM-MS assay which is capable of sensitive and accurate quantification of proPSA in serum. Since serum and plasma are by far the most complex biological fluids, the immunoprecipitation workflow was optimized to achieve sufficient sensitivity, efficiencies of protein purification with immunoaffinity depletion were determined. The developed strategy can detect proPSA and PSA with a limit of detection (LOD) and limit of quantitation (LOQ) at nanogram per milliliter levels, corresponding to a concentration 6 orders-of-magnitude lower than the most abundant serum proteins. Furthermore, the simultaneous measurement of multiple biomarkers, including the mature and precursor forms of PSA, can be achieved in a single multiplexed analysis using LC/MRM-MS. The strategy demonstrated here provides an attractive alternative to ELISAs or RIAs for the reliably measurement of proPSA to improve the specificity of PCa diagnosis.
Ionic liquids are formally defined as liquids that consist entirely of ions, and which are liquid below 100 °C. As these liquids are being proposed for use in a range of electrochemical devices and applications, understanding the electrochemical behaviour of these is increasingly important. In this contribution, we describe the effects of parent amine molecules on electrocatalysis in the protic ionic liquids diethylmethylammonium trifluoromethanesulfonate and diethylmethylammonium heptafluorobutanoate. We first show that diethylmethylamine can adsorb onto Pt electrodes during electrocatalytic reduction of trifluoromethanesulfonic acid in diethylmethylammonium trifluoromethanesulfonate. In contrast, diethylmethylamine promotes the oxidation of formic acid in this ionic liquid, by deprotonating the acid to the active formate species. Therefore, the neutral base can either inhibit or enhance electrocatalysis in the liquid, depending on the reaction under consideration. We also show that the mechanism of formic-acid oxidation in diethylmethylammonium heptafluorobutanoate differs significantly from that observed when using diethylmethylammonium trifluoromethanesulfonate. This phenomenon is attributed to adsorption of poisoning spectator species onto the electrode surface, demonstrating that changes to the structure of ionic-liquid anions can have drastic effects on the electrochemistry of these liquids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.