As a soilborne protist pathogen, Plasmodiophora brassicae causes the devastating clubroot disease on Brassicaeae crops worldwide. Due to its intracellular obligate biotrophic nature, the life cycle of P. brassicae is still not fully understood. Here, we used fluorescent probe-based confocal microscopy and transmission electron microscopy (TEM) to investigate the infection process of P. brassicae on the susceptible host Arabidopsis under controlled conditions. We found that P. brassicae can initiate the primary infection in both root hairs and epidermal cells, producing the uninucleate primary plasmodium at 1 day postinoculation (dpi). After that, the developed multinucleate primary plasmodium underwent condensing and cytoplasm cleavage into uninucleate zoosporangia from 1 to 4 dpi. This was subsequently followed by the formation of multinucleate zoosporangia and the production of secondary zoospores within zoosporangium. Importantly, the secondary zoospores performed a conjugation in the root epidermal cells after their release. TEM revealed extensive uninucleate secondary plasmodium in cortical cells at 8 dpi, indicating the establishment of the secondary infection. The P. brassicae subsequently developed into binucleate, quadrinucleate, and multinucleate secondary plasmodia from 10 to 15 dpi, during which the clubroot symptoms appeared. The uninucleate resting spores were first observed in the cortical cells at 24 dpi, marking the completion of a life cycle. We also provided evidence that the secondary infection of P. brassicae may represent the diploid sexual life stage. From these findings, we propose a refined life cycle of P. brassicae which will contribute to understanding of the complicated infection biology of P. brassicae.
The rapid reorganization and polarization of actin filaments (AFs) toward the pathogen penetration site is one of the earliest cellular responses, yet the regulatory mechanism of AF dynamics is poorly understood. Using live-cell imaging in Arabidopsis, we show that polarization coupled with AF bundling involves precise spatiotemporal control at the site of attempted penetration by the nonadapted barley powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We further show that the Bgh-triggered AF mobility and organelle aggregation are predominately driven by the myosin motor proteins. Inactivation of myosins by pharmacological inhibitors prevents bulk aggregation of organelles and blocks recruitment of lignin-like compounds to the penetration site and deposition of callose and defensive protein, PENETRATION 1 (PEN1) into the apoplastic papillae, resulting in attenuation of penetration resistance. Using gene knockout analysis, we demonstrate that highly expressed myosins XI, especially myosin XI-K, are the primary contributors to cell wall-mediated penetration resistance. Moreover, the quadruple myosin knockout mutant xi-1 xi-2 xi-i xi-k displays impaired trafficking pathway responsible for the accumulation of PEN1 at the cell periphery. Strikingly, this mutant shows not only increased penetration rate but also enhanced overall disease susceptibility to both adapted and nonadapted fungal pathogens. Our findings establish myosins XI as key regulators of plant antifungal immunity.actin cytoskeleton | plant immunity | endocytosis | vesicle | endocytic trafficking
The actin cytoskeleton regulates an array of diverse cellular activities that support the establishment of plant-microbe interactions and plays a critical role in the execution of plant immunity. However, molecular and cellular mechanisms regulating the assembly and rearrangement of actin filaments at plant-pathogen interaction sites remain largely elusive. Here, using live-cell imaging, we show that one of the earliest cellular responses in Arabidopsis thaliana upon powdery mildew attack is the formation of patch-like actin filament structures beneath fungal invasion sites. The actin filaments constituting actin patches undergo rapid turnover, which is regulated by the actin-related protein (ARP)2/3 complex and its activator, the WAVE/SCAR regulatory complex (W/SRC). The focal accumulation of phosphatidylinositol-4,5-bisphosphate at fungal penetration sites appears to be a crucial upstream modulator of the W/SRC-ARP2/3 pathway-mediated actin patch formation. Knockout of W/SRC-ARP2/3 pathway subunits partially compromised penetration resistance with impaired endocytic recycling of the defense-associated t-SNARE protein PEN1 and its deposition into apoplastic papillae. Simultaneously knocking out ARP3 and knocking down the Class I formin (AtFH1) abolished actin patch formation, severely impaired the deposition of cell wall appositions, and promoted powdery mildew entry into host cells. Our results demonstrate that the ARP2/3 complex and formins, two actin-nucleating systems, act cooperatively and contribute to Arabidopsis penetration resistance to fungal invasion.
Plant biotrophic and hemibiotrophic pathogens modulate cellular distribution of host phosphoinositides and recruit PI(4,5)P 2 to the plant-pathogen interfacial membrane as a susceptibility factor for disease development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.