BackgroundStudies have shown that inadequate access to healthcare is associated with lower levels of health and well-being in older adults. Studies have also shown significant urban-rural differences in access to healthcare in developing countries such as China. However, there is limited evidence of whether the association between access to healthcare and health outcomes differs by urban-rural residence at older ages in China.MethodsFour waves of data (2005, 2008/2009, 2011/2012, and 2014) from the largest national longitudinal survey of adults aged 65 and older in mainland China (n = 26,604) were used for analysis. The association between inadequate access to healthcare (y/n) and multiple health outcomes were examined—including instrumental activities of daily living (IADL) disability, ADL disability, cognitive impairment, and all-cause mortality. A series of multivariate models were used to obtain robust estimates and to account for various covariates associated with access to healthcare and/or health outcomes. All models were stratified by urban-rural residence.ResultsInadequate access to healthcare was significantly higher among older adults in rural areas than in urban areas (9.1% vs. 5.4%; p < 0.01). Results from multivariate models showed that inadequate access to healthcare was associated with significantly higher odds of IADL disability in older adults living in urban areas (odds ratio [OR] = 1.58–1.79) and rural areas (OR = 1.95–2.30) relative to their counterparts with adequate access to healthcare. In terms of ADL disability, we found significant increases in the odds of disability among rural older adults (OR = 1.89–3.05) but not among urban older adults. Inadequate access to healthcare was also associated with substantially higher odds of cognitive impairment in older adults from rural areas (OR = 2.37–3.19) compared with those in rural areas with adequate access to healthcare; however, no significant differences in cognitive impairment were found among older adults in urban areas. Finally, we found that inadequate access to healthcare increased overall mortality risks in older adults by 33–37% in urban areas and 28–29% in rural areas. However, the increased risk of mortality in urban areas was not significant after taking into account health behaviors and baseline health status.ConclusionsInadequate access to healthcare was significantly associated with higher rates of disability, cognitive impairment, and all-cause mortality among older adults in China. The associations between access to healthcare and health outcomes were generally stronger among older adults in rural areas than in urban areas. Our findings underscore the importance of providing adequate access to healthcare for older adults—particularly for those living in rural areas in developing countries such as China.
Cross-reactivity between antibodies to different human coronaviruses (HCoVs) has not been systematically studied. By use of Western blot analysis, indirect immunofluorescence assay (IFA), and enzyme-linked immunosorbent assay (ELISA), antigenic cross-reactivity between severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) and 2 HCoVs (229E and OC43) was demonstrated in immunized animals and human serum. In 5 of 11 and 10 of 11 patients with SARS, paired serum samples showed a > or =4-fold increase in antibody titers against HCoV-229E and HCoV-OC43, respectively, by IFA. Overall, serum samples from convalescent patients who had SARS had a 1-way cross-reactivity with the 2 known HCoVs. Antigens of SARS-CoV and HCoV-OC43 were more cross-reactive than were those of SARS-CoV and HCoV-229E.
A rapid antigen test for the diagnosis of severe acute respiratory syndrome (SARS) is essential for control of this disease at the point of management. The nucleocapsid (N) protein of SARS-associated coronavirus (SARS-CoV) is abundantly expressed in infected-cell culture filtrate as demonstrable by Western blotting using convalescent-phase sera from patients with SARS. We used monoclonal antibodies specifically directed against N protein to establish a sensitive antigen capture sandwich enzyme-linked immunosorbent assay (ELISA) for the detection of SARS-CoV. The assay employed a mixture of three monoclonal antibodies for capture and rabbit polyclonal antibodies for detection of serum antigen in 32 cases of clinically probable SARS as defined by the World Health Organization during the epidemic in Guangzhou, China. Recombinant N protein was used as a standard to establish a detection sensitivity of approximated 50 pg/ml. The linear range of detection in clinical specimens was from 100 pg/ml to 3.2 ng/ml. Using a panel of sera collected at different points in time, the amount of circulating N antigen was found to peak 6 to 10 days after the onset of symptoms. The sensitivity of the assay was 84.6% in 13 serologically confirmed SARS patients with blood taken during the first 10 days after the onset of symptoms (11 of 13). The specificity of the assay was 98.5% in 1,272 healthy individuals (1,253 of 1,272). There was no cross-reaction with other human and animal coronaviruses in this assay. In conclusion, a sensitive and quantitative antigen capture ELISA was established for the early diagnosis and disease monitoring of SARS-CoV infection.
Accurate and timely diagnosis of severe acute respiratory syndrome coronavirus (SARS-CoV) infection is a critical step in preventing another global outbreak. In this study, 829 serum specimens were collected from 643 patients initially reported to be infected with SARS-CoV. The sera were tested for the N protein of SARS-CoV by using an antigen capture enzyme-linked immunosorbent assay (ELISA) based on monoclonal antibodies against the N protein of SARS-CoV and compared to 197 control serum samples from healthy donors and non-SARS febrile patients. The results of the N protein detection analysis were directly related to the serological analysis data. From 27 SARS patients who tested positive with the neutralization test, 100% of the 24 sera collected from 1 to 10 days after the onset of symptoms were positive for the N protein. N protein was not detected beyond day 11 in this group. The positive rates of N protein for sera collected at 1 to 5, 6 to 10, 11 to 15, and 16 to 20 days after the onset of symptoms for 414 samples from 298 serologically confirmed patients were 92.9, 69.8, 36.4, and 21.1%, respectively. For 294 sera from 248 serological test-negative patients, the rates were 25.6, 16.7, 9.3, and 0%, respectively. The N protein was not detected in 66 patients with cases of what was initially suspected to be SARS but serologically proven to be negative for SARS and in 197 serum samples from healthy donors and non-SARS febrile patients. The specificity of the assay was 100%. Furthermore, of 16 sera collected from four patients during the SARS recurrence in Guangzhou, 5 sera collected from 7 to 9 days after the onset of symptoms were positive for the N protein. N protein detection exhibited a high positive rate, 96 to 100%, between day 3 and day 5 after the onset of symptoms for 27 neutralization test-positive SARS patients and 298 serologically confirmed patients. The N protein detection rate continually decreased beginning with day 10, and N protein was not detected beyond day 19 after the onset of symptoms. In conclusion, an antigen capture ELISA reveals a high N protein detection rate in acute-phase sera of patients with SARS, which makes it useful for early diagnosis of SARS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.