Rationale: Acute kidney injury (AKI) is pathologically characterized by renal tubular epithelial cell (RTEC) death and interstitial inflammation, while their pathogenesis remains incompletely understood. Dual-specificity phosphatase 2 (DUSP2) recently emerges as a crucial regulator of cell death and inflammation in a wide range of diseases, but its roles in renal pathophysiology are largely unknown. Methods: The expression of DUSP2 in the kidney was characterized by histological analysis in renal tissues from patients and mice with AKI. The role and mechanism of DUSP2-mediated inhibition of tubular epithelial cell pyroptosis in AKI were evaluated both in vivo and in vitro , and confirmed in RTEC-specific deletion of DUSP2 mice. Results: Here, we show that DUSP2 is enriched in RTECs in the renal tissue of both human and mouse and mainly positions in the nucleus. Further, we reveal that loss-of-DUSP2 in RTECs not only is a common feature of human and murine AKI but also positively contributes to AKI pathogenesis. Especially, RTEC-specific deletion of DUSP2 sensitizes mice to AKI by promoting RTEC pyroptosis and the resultant interstitial inflammation. Mechanistic studies show that gasdermin D (GSDMD), which mediates RTEC pyroptosis, is identified as a transcriptional target of activated STAT1 during AKI, whereas DUSP2 as a nuclear phosphatase deactivates STAT1 to restrict GSDMD-mediated RTEC pyroptosis. Importantly, DUSP2 overexpression in RTECs via adeno-associated virus-mediated gene transfer significantly ameliorates AKI. Conclusion: Our findings demonstrate a hitherto unrecognized role of DUSP2-STAT1 axis in regulating RTEC pyroptosis in AKI, highlighting that DUSP2-STAT1 axis is an attractive therapeutic target for AKI.
Introduction: Diabetic kidney disease (DKD) is a major source of chronic kidney disease (CKD) and end-stage renal disease (ESRD). The injury of glomerular in DKD is the primary focus, however proximal tubulopathy also is an indispensable factor in the progression of DKD. Interleukin-37 (IL-37), an anti-inflammatory cytokine of IL-1 family member, has been demonstrated to be associated with diabetes and its relative complications in recent years, but the effect of IL-37 on renal fibrosis in DKD is unclear. Methods: We established streptozotocin plus high fat diet (STZ/HFD)-induced DKD mice model with wild type (WT) or IL-37 transgenic (IL-37tg) mice. Masson and HE staining, immunostaining, and Western blot were used to observe renal fibrosis. In addition, RNA-sequencing was applied to explore the potential mechanisms of IL-37. In vitro, treatment of human proximal tubular (HK-2) cells with 30 mmol/L high glucose or 300 ng/ml recombinant IL-37 further elucidated the possible mechanism of IL-37 inhibition of DKD renal fibrosis. Results: In this work, we first verified the decreased expression of IL-37 in kidney of DKD patient and its correlation with clinical features of renal impairment. Moreover, IL-37 expression markedly attenuated proteinuria and renal fibrosis in DKD mice. Using RNA-sequencing, we found and confirmed a novel role of IL-37 in ameliorating fatty-acid oxidation (FAO) reduction of renal tubular epithelial cells both in vivo and in intro. In addition, further mechanistic studies showed that IL-37 alleviated the FAO reduction in HK-2 cells and renal fibrosis in DKD mice through upregulating carnitine palmitoyl-transferase 1A (CPT1A), an important catalyzer for FAO pathway. Conclusion: These data suggest that IL-37 attenuates renal fibrosis via regulating FAO in renal epithelial cells. Upregulation of IL-37 levels might be an effective therapeutic avenue for DKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.