BackgroundElectrocautery applications in surgical operations produce evasive odorous smoke in the cleanest operation rooms. Because of the incomplete combustion of electrical current in the tissues and blood vessels during electrocautery applications, electrocautery smoke (ES) containing significant unknown chemicals and biological forms is released. The potential hazards and cancer risk should be further investigated from the perspective of the occupational health of surgical staff.MethodsThe particle number concentration and the concentration of polycyclic aromatic hydrocarbons (PAHs) in ES were thoroughly investigated in 10 mastectomies to estimate the cancer risk for surgical staff. The particle number concentration and gaseous/particle PAHs at the surgeons’ and anesthetic technologists’ (AT) breathing heights were measured with a particle counter and filter/adsorbent samplers. PAHs were soxhlet-extracted, cleaned, and analyzed by gas chromatography/mass spectrometry.ResultsAbundant submicron particles and high PAH concentrations were found in ES during regular surgical mastectomies. Most particles in ES were in the size range of 0.3 to 0.5 μm, which may potentially penetrate through the medical masks into human respiration. The average particle/gaseous phase PAH concentrations at the surgeon’s breathing height were 131 and 1,415 ng/m3, respectively, which is 20 to 30 times higher than those in regular outdoor environments. By using a toxicity equivalency factor, the cancer risk for the surgeons and anesthetic technologists was calculated to be 117 × 10-6 and 270 × 10-6, respectively; the higher cancer risk for anesthetic technologists arises due to the longer working hours in operation rooms.ConclusionsThe carcinogenic effects of PAHs in ES on the occupational health of surgical staff should not be neglected. The use of an effective ES evacuator or smoke removal apparatus is strongly suggested to diminish the ES hazards to surgical staff.
We show the influences of temperature on the self-imaging in the coherent atomic system which consists of four-level 87 Rb atoms. The different-direction self-imaging, the corresponding imaging quality, and the imaging contrast ratio in this Doppler broadening medium are studied. As a result, the imaging-position linearly increases with the temperature, while the quality of the self-imaging does not show clear connection with the temperature. Due to the weaker mutual interference in the higher temperature, the contrast ratios in the two directions increase. The interesting results are important and may have potential applications in imaging storage and processing.
According to density matrix equations of the interaction between light and matter, the expression for the susceptibility of the Eu 3+ :Y2SiO5 crystal is obtained. When the control field is a Gaussian beam, we investigate and analyze the influence of probe detuning, the Rabi frequency of the control field and the laser line width on the transverse optical properties. We also analyze the influence of the dope-ion concentration on electromagnetically induced transparency (EIT). The analysis result indicates that the transmission is not a monotonic function of the dope-ion concentration. Based on the influences of various parameters on the transverse optical properties, we choose the appropriate parameters to realize the desired EIT and gradient refractive index, which has applications in focusing and imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.