A new series of charge‐neutral Ru(II) pyridyl and isoquinoline pyrazolate complexes, [Ru(bppz)2(PPh2Me)2] (bbpz: 3‐tert‐butyl‐5‐pyridyl pyrazolate) (1), [Ru(fppz)2(PPh2Me)2] (fppz: 3‐trifluoromethyl‐5‐pyridyl pyrazolate) (2), [Ru(ibpz)2(PPhMe2)2] (ibpz: 3‐tert‐butyl‐5‐(1‐isoquinolyl) pyrazolate) (3), [Ru(ibpz)2(PPh2Me)2] (4), [Ru(ifpz)2(PPh2Me)2] (ifpz: 3‐trifluoromethyl‐5‐(1‐isoquinolyl) pyrazolate) (5), [Ru(ibpz)2(dpp)] (dpp represents cis‐1,2‐bis‐(diphenylphosphino)ethene) (6), and [Ru(ifpz)2(dpp)] (7), have been synthesized, and their structural, electrochemical, and photophysical properties have been characterized. A comprehensive time‐dependant density functional theory (TDDFT) approach has been used to assign the observed electronic transitions to specific frontier orbital configurations. A multilayer organic light‐emitting device (OLED) using 24 wt % of 5 as the dopant emitter in a 4,4′‐N,N′‐dicarbazolyl‐1,1′‐biphenyl (CBP) host with 4,4′‐bis[N‐(1‐naphthyl)‐N‐phenylamino]biphenyl (NPB) as the hole‐transport layer exhibits saturated red emission with an external quantum efficiency (EQE) of 5.10 %, luminous efficiency of 5.74 cd A–1, and power efficiency of 2.62 lm W–1. The incorporation of a thin layer of poly(styrene sulfonate)‐doped poly(3,4‐ethylenedioxythiophene) (PEDOT) between indium tin oxide (ITO) and NPB gave anoptimized device with an EQE of 7.03 %, luminous efficiency of 8.02 cd A–1, and power efficiency of 2.74 lm W–1 at 20 mA cm–2. These values represent a breakthrough in the field of OLEDs using less expensive Ru(II) metal complexes. The nonionic nature of the complexes as well as their high emission quantum efficiencies and short radiative lifetimes are believed to be the key factors enabling this unprecedented achievement. The prospects for color tuning based on Ru(II) complexes are also discussed in light of some theoretical calculations.
In this paper, by using the unique properties of the efficient red‐emitting Osmium (Os) complex in combination with an efficient blue‐emitting Iridium (Ir) complex, we report WOLEDs with forward viewing efficiencies up to (17% photon/electron, 36 cd/A, 28 lm/W) and total peak external efficiencies up to (28.8 %, 47.5 lm/W). Results show that the Os complex is a multi‐functional material that could be useful for implementing highly efficient and color‐stable phosphorescent OLEDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.