Wind power has features of uncertainty. When wind power producers (WPPs) bid in the day-ahead electricity market, how to deal with the deviation between forecasting output and actual output is one of the important topics in the design of electricity market with WPPs. This paper makes use of a non-probabilistic approach—Information gap decision theory (IGDT)—to model the uncertainty of wind power, and builds a robust optimization scheduling model for wind–storage–electric vehicles(EVs) hybrid system with EV participations, which can make the scheduling plan meet the requirements within the range of wind power fluctuations. The proposed IGDT robust optimization model first transforms the deterministic hybrid system optimization scheduling model into a robust optimization model that can achieve the minimum recovery requirement within the range of wind power output fluctuation, and comprehensively considers each constraint. The results show that the wind–storage–EVs hybrid system has greater operational profits and less impact on the safe and stable operation of power grids when considering the uncertainty of wind power. In addition, the proposed method can provide corresponding robust wind power fluctuation under different expected profits of the decision-maker to the wind–storage–EVs hybrid system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.