Using neuroeconomic approaches, our findings demonstrate that the underlying duality of the β-δ discounting networks that jointly influence valuation is impaired to a pathogenic state in abstinent heroin dependents. The imbalanced functional link between the β-δ networks for valuation may orchestrate the irrational choice in drug addiction.
The objective of the study described here is to fundamentally elucidate the biological response of 3D printed Ti-6Al-4V alloy mesh structures that were surface modified to introduce titania nanotubes with an average pore size of ∼80 nm via an electrochemical anodization process from the perspective of enhancing bioactivity. The bioactivity of the mesh structures were analyzed through immersion test in simulated body fluid, which confirmed the nucleation and growth of fine globular nanoscale apatite on the nanoporous titania-modified (anodized) mesh structure surface, and agglomerated apatite with fine flakes of apatite crystals on as-fabricated mesh structure surface, that were rich in calcium and phosphorous. The cellular activity of bioactive anodized mesh structure was explored in terms of cell-material interactions involving adhesion, proliferation, synthesis of extracellular and intracellular proteins, differentiation, and mineralization. Cells adhered with a sheet-like morphology on as-fabricated mesh structure, whereas, on anodized mesh structure, numerous filopodia-like cellular extensions interacting with nanotube pores were observed. The formation of a bioactive nanoscale apatite, cell-nanotube interactions as imaged via electron microscopy, higher expression of proteins (actin, vinculin, fibronectin, and alkaline phosphatase (ALP)), and calcium content points toward the determining role of anodized mesh structure in modulating osteoblasts functions. The unique combination of nanoporous bioactive titania and interconnected porous architecture of anodized titanium alloy mesh structure provided a multimodal roughness surface ranging from nano to micro to macroscale, which helps in attaining strong primary and secondary fixation of the implant device along with the pathway for supply of nutrients and oxygen to cells and tissue.
Many psychiatric diseases such as post-traumatic stress disorder (PTSD) are characterized by abnormal processing of emotional stimuli particularly fear. The medial prefrontal cortex (mPFC) is critically involved in fear expression. However, the molecular mechanisms underlying this process are largely unknown. Neuregulin-1 (NRG1) reportedly regulates pyramidal neuronal activity via ErbB4 receptors, which are abundant in parvalbumin (PV)-expressing interneurons in the PFC. In this study, we aimed to determine how NRG1/ErbB4 signaling in the mPFC modulates fear expression and found that tone-cued fear conditioning increased NRG1 expression in the mPFC. Tone-cued fear conditioning was inhibited following neutralization of endogenous NRG1 and specific inhibition or genetic ablation of ErbB4 in the prelimbic (PL) cortex but not in the infralimbic cortex. Furthermore, ErbB4 deletion specifically in PV neurons impaired tone-cued fear conditioning. Notably, overexpression of ErbB4 in the PL cortex is sufficient to reverse impaired fear conditioning in PV-Cre;ErbB4−/− mice. Together, these findings identify a previously unknown signaling pathway in the PL cortex that regulates fear expression. As both NRG1 and ErbB4 are risk genes for schizophrenia, our study may shed new light on the pathophysiology of this disorder and help to improve treatments for psychiatric disorders such as PTSD.
The objective of this study was to identify a predictor to forecast superovulation response on the basis of associations between superovulation performance and gene polymorphism. The PCR-RFLP method was applied to detect two reported single nucleotide polymorphisms (SNPs) of G59752C and T81637C (rs41614030) located in introns 3 and 4 of the bovine progesterone receptor (PGR) gene in 171 Chinese Holstein cows treated for superovulation and evaluate its associations with superovulation traits. In polymorphic locus 81637, all cows without superovulation response were g.81637TC and g.81637TT genotypes. Association analysis showed that these two SNPs had significant effects on the total number of ova (TNO) (p<0.05), and the T81637C polymorphism was significantly associated with the number of transferable embryos (p<0.05). In addition, significant additive effects (p<0.05) on TNO were detected in the polymorphisms of G59752C and T81637C. These results showed for the first time that the G59752C and T81637C polymorphisms in PGR gene were associated with superovulation traits and indicated that PGR gene can be used as a predictor for superovulation in Chinese Holstein cows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.