Tumor initiation and growth depend on its microenvironment in which cancer-associated fibroblasts (CAFs) in tumor stroma play an important role. Prostaglandin E2 (PGE2) and interleukin (IL)-6 signal pathways are involved in the crosstalk between tumor and stromal cells. However, how PGE2-mediated signaling modulates this crosstalk remains unclear. Here, we show that microRNA (miR)-149 links PGE2 and IL-6 signaling in mediating the crosstalk between tumor cells and CAFs in gastric cancer (GC). miR-149 inhibited fibroblast activation by targeting IL-6 and miR-149 expression was substantially suppressed in the CAFs of GC. miR-149 negatively regulated CAFs and their effect on GC development both in vitro and in vivo. CAFs enhanced epithelial-to-mesenchymal transition (EMT) and the stem-like properties of GC cells in a miR-149-IL-6-dependent manner. In addition to IL-6, PGE2 receptor 2 (PTGER2/EP2) was revealed as another potential target of miR-149 in fibroblasts. Furthermore, H. pylori infection, a leading cause of human GC, was able to induce cyclooxygenase-2 (COX-2)/PGE2 signaling and to enhance PGE2 production, resulting in the hypermethylation of miR-149 in CAFs and increased IL-6 secretion. Our findings indicate that miR-149 mediates the crosstalk between tumor cells and CAFs in GC and highlight the potential of interfering miRNAs in stromal cells to improve cancer therapy.
Imatinib mesylate (IM), a targeted competitive inhibitor of the BCR-ABL tyrosine kinase, has revolutionized the clinical treatment of chronic myeloid leukemia (CML). However, resistance and intolerance are still a challenge in the treatment of CML. Autophagy has been proposed to play a role in IM resistance. To investigate the anti-leukemic activity of specific and potent autophagy inhibitor-1 (spautin-1) in CML, we detected its synergistic effect with IM in K562 and CML cells. Our results showed that spautin-1 markedly inhibited IM-induced autophagy in CML cells by downregulating Beclin-1. Spautin-1 enhanced IM-induced CML cell apoptosis by reducing the expression of the anti-apoptotic proteins Mcl-1 and Bcl-2. We further demonstrated that the pro-apoptotic activity of spautin-1 was associated with activation of GSK3β, an important downstream effector of PI3K/AKT. The findings indicate that the autophagy inhibitor spautin-1 enhances IM-induced apoptosis by inactivating PI3K/AKT and activating downstream GSK3β, leading to downregulation of Mcl-1 and Bcl-2, which represents a promising approach to improve the efficacy of IM in the treatment of patients with CML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.