The delayed luminescence (DL) (i.e. the photo-induced photon emission long after the illumination is switched off) of unicellular green algae samples has been measured when different concentrations of heavy metals are added to the standard culture medium, with the aim of assessing the DL as a promising approach for assaying the toxicity of contaminants such as metals. In particular, samples of freshwater green micro-algae Selenastrum capricornutum have been used. Concentrations of cadmium, chromium, lead and copper, ranging from 10−5 to 10−2 M, have been tested. The analysis of the decay trends, in the time interval from tens of microseconds to seconds, of the DL spectral components demonstrates that the DL parameters are sensitive to the presence of such pollutants. More precisely, the performed analysis allowed us to determine phenomenological relationships between the DL parameters and the metal concentration that could be used in view of the possibility of realizing a biosensor for water pollution detection. Attempts to distinguish between different contaminants are also described. Results of this preliminary study show that the DL measure based technique is suitable as a general bioassay of metal contamination and it could also be used to test the efficiency in bioavailability studies.
Time resolved spectral components of delayed luminescence (DL) from single dry soybean seeds were measured using a device with single photon sensitivity. The seeds were aged by a thermal treatment to change their viability. A correlation was observed between the seeds viability and some DL parameters, i.e. the total number of photons emitted and the relative decay probability of excited states. This relevant result confirms the close connection between the state of biological systems and their DL, and it can allow the development of a quick selection technique for single dry seeds, a goal impossible up today.
Delayed luminescence from a single dry soybean seed was investigated in both spectral and time domains, under different excitation wavelengths. Emission spectra were collected, under 337 nm laser excitation, from native and artificially deteriorated seeds and the time-dependence of different spectral components was analyzed in detail. The single seed viability was evaluated through observation of germination properties after imbibition and compared with different parameters related to the luminescence kinetics. The significant correlation found between single seed delayed luminescence parameters and germination capability strongly validates the connection of this phenomenon with the functional state of the system and suggests the development of a non-invasive technique for seed quality determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.