T lymphocytes are increasingly recognized as key modulators of detrimental inflammatory cascades in acute ischaemic stroke, but the potential of T cell-targeted therapy in brain ischaemia is largely unexplored. Here, we characterize the effect of inhibiting leukocyte very late antigen-4 and endothelial vascular cell adhesion molecule-1-mediated brain invasion-currently the most effective strategy in primary neuroinflammatory brain disease in murine ischaemic stroke models. Very late antigen-4 blockade by monoclonal antibodies improved outcome in models of moderate stroke lesions by inhibiting cerebral leukocyte invasion and neurotoxic cytokine production without increasing the susceptibility to bacterial infections. Gene silencing of the endothelial very late antigen-4 counterpart vascular cell adhesion molecule-1 by in vivo small interfering RNA injection resulted in an equally potent reduction of infarct volume and post-ischaemic neuroinflammation. Furthermore, very late antigen-4-inhibition effectively reduced the post-ischaemic vascular cell adhesion molecule-1 upregulation, suggesting an additional cross-signalling between invading leukocytes and the cerebral endothelium. Dissecting the specific impact of leukocyte subpopulations showed that invading T cells, via their humoral secretion (interferon-γ) and immediate cytotoxic mechanisms (perforin), were the principal pathways for delayed post-ischaemic tissue injury. Thus, targeting T lymphocyte-migration represents a promising therapeutic approach for ischaemic stroke.
Background and Purpose-Therapeutic modification of the postischemic immune processes is a key target of current experimental stroke research. For successful translation into the clinical setting, experimental studies must account for the impact of different strokes on the immune system including susceptibility to infection. Herein, we characterize the impact of 3 ischemia models on systemic immunological and microbiological parameters. Methods-In C57Bl/6 mice (nϭ235), the middle cerebral artery was occluded (MCAO) either permanently by distal coagulation or transiently by an intraluminal filament for 30 minutes or 90 minutes. Differential leukocyte counts were performed in blood and lymphatic organs. Lymphocyte subpopulations and apoptotic cells were characterized by flow cytometry. Blood cytokine concentrations were measured by ELISA. Microbiological cultures were grown from blood and lung samples. Results-Only extensive infarcts induced leukopenia 24 hours, 3 days and 7 days after MCAO and decreased lymphocyte counts in spleen, lymph nodes and thymus. In contrast, small infarcts led to no significant changes in differential blood count or reduction of overall cell counts in lymphatic organs. Splenic lymphocyte apoptosis and blood cytokine production was significantly increased after extensive lesions compared to mild ischemia. Hypothermia and weight loss occurred only in mice with large infarcts which also suffered from pneumonia and sepsis. In contrast to infarct size, location and side of the infarct did not affect physiological parameters and immune cell alterations. Conclusions-Postischemic systemic immunomodulation and infectious complications differ substantially among stroke models. Translational studies of immunomodulatory therapies for stroke must account for this heterogeneity.
BackgroundThe contribution of neuroinflammation and specifically brain lymphocyte invasion is increasingly recognised as a substantial pathophysiological mechanism after stroke. FTY720 is a potent treatment for primary neuroinflammatory diseases by inhibiting lymphocyte circulation and brain immigration. Previous studies using transient focal ischemia models showed a protective effect of FTY720 but did only partially characterize the involved pathways. We tested the neuroprotective properties of FTY720 in permanent and transient cortical ischemia and analyzed the underlying neuroimmunological mechanisms.Methodology/Principal FindingsFTY720 treatment resulted in substantial reduction of circulating lymphocytes while blood monocyte counts were significantly increased. The number of histologically and flow cytometrically analyzed brain invading T- and B lymphocytes was significantly reduced in FTY720 treated mice. However, despite testing a variety of treatment protocols, infarct volume and behavioural dysfunction were not reduced 7d after permanent occlusion of the distal middle cerebral artery (MCAO). Additionally, we did not measure a significant reduction in infarct volume at 24h after 60 min filament-induced MCAO, and did not see differences in brain edema between PBS and FTY720 treatment. Analysis of brain cytokine expression revealed complex effects of FTY720 on postischemic neuroinflammation comprising a substantial reduction of delayed proinflammatory cytokine expression at 3d but an early increase of IL-1β and IFN-γ at 24 h after MCAO. Also, serum cytokine levels of IL-6 and TNF-α were increased in FTY720 treated animals compared to controls.Conclusions/SignificanceIn the present study we were able to detect a reduction of lymphocyte brain invasion by FTY720 but could not achieve a significant reduction of infarct volumes and behavioural dysfunction. This lack of neuroprotection despite effective lymphopenia might be attributed to a divergent impact of FTY720 on cytokine expression and possible activation of innate immune cells after brain ischemia.
Background and Purpose-Hyperbaric oxygen (HBO) has been shown to protect the brain parenchyma against transient focal cerebral ischemia, but its effects on the ischemic microcirculation are largely unknown. We examined the potential of HBO to reduce postischemic blood-brain barrier (BBB) damage and edema. Methods-Wistar rats and C57/BL6 mice underwent occlusion of the middle cerebral artery (MCAO) for 2 hours. Forty minutes after filament introduction, animals breathed either 100% O 2 at 3.0 atmospheres absolute (ata; HBO group) or at 1.0 ata (control) for 1 hour in an HBO chamber. In rats, MRI was performed 15 minutes after MCAO and after 15 minutes and 3, 6, 24, and 72 hours of reperfusion. In mice, BBB permeability for sodium fluorescein was measured after 24-hour reperfusion. Results-Increased BBB permeability on postcontrast T1-weighted (T1w)
The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.