Ultra-smooth, highly spherical monocrystalline gold particles were prepared by a cyclic process of slow growth followed by slow chemical etching, which selectively removes edges and vertices. The etching process effectively makes the surface tension isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even showing Fano-like resonances in small clusters. The high monodispersity of the particles we demonstrate should facilitate the self-assembly of nanoparticle clusters with uniform optical resonances, which could in turn be used to fabricate optical metafluids. Narrow size distributions are required not only to control the spectral features, but also the morphology and yield of clusters in certain assembly schemes. KEYWORDS:Gold nanospheres, plasmonics, monodisperse, chemical etching, Fano-like resonance. TOC Graphic 3Accepted version of ACS Nano 7 (12): 11064 (2013) In equilibrium, a nanoscale crystal adopts a polyhedral morphology to minimize its surface free energy. As a result, metallic nanoparticles grown near equilibrium form facets. [1][2][3] Although the plasmon resonances and ease of functionalization 4 make such particles promising 1 for bottom-up assembly of optical resonators 5,6 and isotropic metamaterials, 7 it is difficult to make structures whose optical properties are reproducible from one particle or one multiple-particle cluster to the next since the resonances are often sensitive to features such as sharp corners, 8 number of facets, 9 roughness, 10 and overall size and shape. 11 Moreover, the interparticle optical coupling varies significantly with nanometer-scale changes in gap distance 12 and orientation. 13 The ideal particle for self-assembly of plasmonic structures is therefore not a polyhedron, but a spherical crystal without facets or grain boundaries. However, producing such particles is a materials challenge, since spherical crystals are not stable under any growth conditions. Here we show that a cyclic process of slow growth followed by slow chemical etching, which selectively removes edges and vertices, results in ultra-smooth, highly spherical monocrystalline gold particles. The etching process, which is functionally similar to (but chemically different from) that used to make monocrystalline silver nanospheres for surface-enhanced Raman spectroscopy, 14,15 effectively makes the surface tension isotropic, so that spheres are favored under quasi-static conditions. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even showing Fano-like resonances 16 in small assemblies. The cyclic process we demonstrate could be extended to other metals and, because it is scalable up to particle sizes of 200 nm or more, might be used to create strongly scattering particles for sensors, 17,18 electromagnetic resonators, 7 and oth...
The application of the silver plates as a proper substrate for surface enhanced Raman spectroscopy (SERS) was performed to give deep insight on LSPR-dependent SERS performance. Firstly, an improved seed-mediated method is developed to synthesize silver nanoplates (NP) with broad-tuning localized surface plasmon resonance (LSPR) and high stability. The LSPR peaks could be tuned in the range from 485 to ∼1200 nm by controlling the experimental parameters. With the treatment of sodium dodecyl sulfate (SDS), silver NPs exhibit high stability for SERS tests. The LSPR-dependent SERS study was performed by taking four typical silver NPs with LSPR peaks at 485 nm, 614 nm, 906 nm and 1130 nm as substrates. Also, two probe molecules, 4-amino-thiophenol (4-ATP) and rhodamine-6G (R-6G), were used, and both the 458 nm and 633 nm lasers were selected as excitation for the LSPR-dependent SERS study. Our results indicated that the SERS performance is largely dependent on the LSPR of the silver NP substrate at a given excitation wavelength. Specifically, the Raman signals were greatly enhanced when the laser excitation line matched (close to the LSPR band) the peak position of LSPR band. When at the excitation of 633 nm, two orders of magnitude stronger SERS signals would be observed for the Ag-614 substrate than that of the Ag-485 and Ag-1130 substrates with their LSPR peak positions far away from 633 nm. The same result can also be observed when the laser excitation at 458 nm was selected for the Ag-485 substrate. Our study gives a deep insight into LSPR-dependent SERS performance. It also gives a method for giving large SERS enhancement just by selecting a proper excitation wavelength matched to the LSPR of the substrate.
This research focuses on a desensitization method to develop a wide-range FBG sensor for extra-large strain monitoring, which is an essential requirement in large scale infrastructures or for some special occasions. Under appropriate hypotheses, the strain transfer distribution of wide-range FBG sensor based on the shear-lag theory is conducted to improve the accuracy of extra-large strain measurements. It is also discussed how the elastic modulus of adhesive layer affects the strain transfer rate. Two prototypes in different monitoring ranges are designed and fabricated by two layers of steel pipe encapsulation. The presented theoretical model is verified by experimental results. Moreover, it is demonstrated that experimentation in regards to the calibration of the wide-range FBG sensor, improved the amplification coefficient up to 2.08 times and 3.88 times, respectively. The static errors are both calculated and analyzed in this experiment. The wide-range FBG strain sensor shows favourable linearity and stability, which is an excellent property of sensors for extra-large strain monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.